12a
0578
(K12a
0578
)
A knot diagram
1
Linearized knot diagam
3 7 9 10 11 2 12 1 6 5 4 8
Solving Sequence
4,10
5 11 6
8,12
1 7 9 3 2
c
4
c
10
c
5
c
11
c
12
c
7
c
9
c
3
c
2
c
1
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
58
+ 24u
56
+ ··· + 4b 4u, u
56
23u
54
+ ··· + 4a + 2, u
61
2u
60
+ ··· + 2u + 2i
I
u
2
= h474u
7
a
2
+ 726u
7
a + ··· + 845a + 670, 2u
7
a
2
+ 4u
7
a + ··· + 4a + 2, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
I
u
3
= hb 1, 2u
3
3u
2
+ 3a 3u + 3, u
4
3u
2
+ 3i
I
u
4
= hb + 1, u
2
+ a + u + 1, u
4
u
2
1i
I
v
1
= ha, b 1, v 1i
* 5 irreducible components of dim
C
= 0, with total 94 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
58
+24u
56
+· · ·+4b4u, u
56
23u
54
+· · ·+4a+2, u
61
2u
60
+· · ·+2u+2i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
2u
2
a
8
=
1
4
u
56
+
23
4
u
54
+ ···
3
2
u
1
2
1
4
u
58
6u
56
+ ··· + u
2
+ u
a
12
=
u
3
+ 2u
u
3
+ u
a
1
=
1
4
u
54
+
23
4
u
52
+ ··· +
5
2
u +
1
2
1
4
u
54
+
11
2
u
52
+ ··· 4u
3
+ u
a
7
=
1
2
u
60
+ u
59
+ ···
3
2
u
1
2
u
60
+ u
59
+ ··· +
5
2
u + 1
a
9
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
3
=
u
12
+ 5u
10
9u
8
+ 6u
6
u
2
+ 1
u
14
6u
12
+ 13u
10
10u
8
2u
6
+ 4u
4
+ u
2
a
2
=
1
4
u
57
+ 6u
55
+ ··· + u + 1
1
4
u
57
+
23
4
u
55
+ ··· +
1
2
u
2
+
1
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
60
+ 50u
58
+ ··· + 20u + 12
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
61
+ 24u
60
+ ··· + 3579u + 49
c
2
, c
6
u
61
2u
60
+ ··· + 31u + 7
c
3
u
61
+ 2u
60
+ ··· 9398u + 5482
c
4
, c
5
, c
10
u
61
2u
60
+ ··· + 2u + 2
c
7
, c
8
, c
12
u
61
+ 2u
60
+ ··· 69u + 7
c
9
, c
11
u
61
+ 6u
60
+ ··· + 736u + 128
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
61
+ 36y
60
+ ··· + 7535175y 2401
c
2
, c
6
y
61
24y
60
+ ··· + 3579y 49
c
3
y
61
10y
60
+ ··· 675769720y 30052324
c
4
, c
5
, c
10
y
61
50y
60
+ ··· + 8y 4
c
7
, c
8
, c
12
y
61
64y
60
+ ··· + 4075y 49
c
9
, c
11
y
61
+ 38y
60
+ ··· + 115712y 16384
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.045080 + 0.313421I
a = 1.89893 0.49988I
b = 1.88740 + 0.56009I
6.47668 + 1.81251I 0
u = 1.045080 0.313421I
a = 1.89893 + 0.49988I
b = 1.88740 0.56009I
6.47668 1.81251I 0
u = 1.082430 + 0.367312I
a = 1.87282 0.76181I
b = 2.11893 + 0.51520I
4.29961 7.38307I 0
u = 1.082430 0.367312I
a = 1.87282 + 0.76181I
b = 2.11893 0.51520I
4.29961 + 7.38307I 0
u = 0.026391 + 0.841561I
a = 0.017329 0.723163I
b = 0.0358248 + 0.1097390I
2.59755 1.90534I 5.48183 + 3.73036I
u = 0.026391 0.841561I
a = 0.017329 + 0.723163I
b = 0.0358248 0.1097390I
2.59755 + 1.90534I 5.48183 3.73036I
u = 1.116950 + 0.320702I
a = 0.591762 + 0.486353I
b = 0.901647 0.672603I
1.11946 + 3.33466I 0
u = 1.116950 0.320702I
a = 0.591762 0.486353I
b = 0.901647 + 0.672603I
1.11946 3.33466I 0
u = 0.148036 + 0.815189I
a = 3.32481 + 2.12115I
b = 2.47279 + 0.61911I
1.44711 + 11.68910I 5.41407 7.67902I
u = 0.148036 0.815189I
a = 3.32481 2.12115I
b = 2.47279 0.61911I
1.44711 11.68910I 5.41407 + 7.67902I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.159456 + 0.787209I
a = 3.07363 + 2.55815I
b = 2.30891 + 0.83730I
3.77656 5.89886I 8.15888 + 3.94613I
u = 0.159456 0.787209I
a = 3.07363 2.55815I
b = 2.30891 0.83730I
3.77656 + 5.89886I 8.15888 3.94613I
u = 0.128661 + 0.790668I
a = 1.20590 0.92529I
b = 1.199370 0.497535I
4.10929 7.41360I 1.61547 + 7.26505I
u = 0.128661 0.790668I
a = 1.20590 + 0.92529I
b = 1.199370 + 0.497535I
4.10929 + 7.41360I 1.61547 7.26505I
u = 0.050353 + 0.793051I
a = 1.03212 1.57158I
b = 0.890863 0.963022I
6.44106 0.24388I 3.18042 + 0.12157I
u = 0.050353 0.793051I
a = 1.03212 + 1.57158I
b = 0.890863 + 0.963022I
6.44106 + 0.24388I 3.18042 0.12157I
u = 0.687219 + 0.308158I
a = 1.43674 0.19679I
b = 1.78452 + 0.21827I
7.10517 1.78344I 12.35005 + 2.03995I
u = 0.687219 0.308158I
a = 1.43674 + 0.19679I
b = 1.78452 0.21827I
7.10517 + 1.78344I 12.35005 2.03995I
u = 1.25692
a = 0.481060
b = 0.855799
2.32742 0
u = 1.217190 + 0.340958I
a = 1.011960 + 0.019839I
b = 0.688579 1.089540I
2.85750 3.85140I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.217190 0.340958I
a = 1.011960 0.019839I
b = 0.688579 + 1.089540I
2.85750 + 3.85140I 0
u = 0.611451 + 0.390031I
a = 1.342980 0.209011I
b = 1.75805 + 0.23081I
5.48935 + 7.39656I 9.73203 7.29176I
u = 0.611451 0.390031I
a = 1.342980 + 0.209011I
b = 1.75805 0.23081I
5.48935 7.39656I 9.73203 + 7.29176I
u = 1.28941
a = 1.15132
b = 0.131178
5.56027 0
u = 0.235942 + 0.661253I
a = 1.48007 + 2.97320I
b = 1.39466 + 0.87587I
5.54702 1.76287I 9.26008 + 3.99131I
u = 0.235942 0.661253I
a = 1.48007 2.97320I
b = 1.39466 0.87587I
5.54702 + 1.76287I 9.26008 3.99131I
u = 1.238810 + 0.387315I
a = 0.113664 0.741618I
b = 0.115647 + 0.168942I
1.14891 + 6.31724I 0
u = 1.238810 0.387315I
a = 0.113664 + 0.741618I
b = 0.115647 0.168942I
1.14891 6.31724I 0
u = 1.280270 + 0.275839I
a = 0.249437 0.922926I
b = 0.613860 + 0.196052I
2.59552 4.85268I 0
u = 1.280270 0.275839I
a = 0.249437 + 0.922926I
b = 0.613860 0.196052I
2.59552 + 4.85268I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.302742 + 0.600452I
a = 0.95957 + 2.68395I
b = 1.173020 + 0.631568I
4.47511 3.82165I 8.02527 + 1.02116I
u = 0.302742 0.600452I
a = 0.95957 2.68395I
b = 1.173020 0.631568I
4.47511 + 3.82165I 8.02527 1.02116I
u = 1.284030 + 0.381487I
a = 0.134033 0.700730I
b = 0.157554 + 0.062498I
1.47922 2.48565I 0
u = 1.284030 0.381487I
a = 0.134033 + 0.700730I
b = 0.157554 0.062498I
1.47922 + 2.48565I 0
u = 1.299870 + 0.344849I
a = 0.463664 1.207460I
b = 1.040970 0.847148I
2.22544 + 4.34429I 0
u = 1.299870 0.344849I
a = 0.463664 + 1.207460I
b = 1.040970 + 0.847148I
2.22544 4.34429I 0
u = 1.318970 + 0.274899I
a = 0.178307 0.453100I
b = 0.367203 0.307219I
2.88323 + 1.86161I 0
u = 1.318970 0.274899I
a = 0.178307 + 0.453100I
b = 0.367203 + 0.307219I
2.88323 1.86161I 0
u = 0.010977 + 0.647106I
a = 0.368429 0.667382I
b = 0.488496 + 0.022625I
1.39623 + 1.46553I 4.80729 4.40781I
u = 0.010977 0.647106I
a = 0.368429 + 0.667382I
b = 0.488496 0.022625I
1.39623 1.46553I 4.80729 + 4.40781I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.383270 + 0.045423I
a = 0.445627 0.436211I
b = 0.630719 0.251341I
5.65281 + 4.80409I 0
u = 1.383270 0.045423I
a = 0.445627 + 0.436211I
b = 0.630719 + 0.251341I
5.65281 4.80409I 0
u = 1.368750 + 0.233531I
a = 1.10473 + 1.86272I
b = 1.17608 + 1.32230I
9.69673 + 0.83184I 0
u = 1.368750 0.233531I
a = 1.10473 1.86272I
b = 1.17608 1.32230I
9.69673 0.83184I 0
u = 1.346800 + 0.339601I
a = 0.168072 1.073780I
b = 1.370380 0.345312I
0.53517 + 11.49560I 0
u = 1.346800 0.339601I
a = 0.168072 + 1.073780I
b = 1.370380 + 0.345312I
0.53517 11.49560I 0
u = 1.368020 + 0.269439I
a = 0.92620 + 2.29059I
b = 1.61066 + 1.41688I
10.58940 + 5.14714I 0
u = 1.368020 0.269439I
a = 0.92620 2.29059I
b = 1.61066 1.41688I
10.58940 5.14714I 0
u = 0.536071 + 0.277726I
a = 0.182357 0.605325I
b = 0.358021 + 0.249835I
0.27372 3.92540I 6.34246 + 7.90863I
u = 0.536071 0.277726I
a = 0.182357 + 0.605325I
b = 0.358021 0.249835I
0.27372 + 3.92540I 6.34246 7.90863I
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.361620 + 0.334725I
a = 0.07582 + 2.89140I
b = 2.60850 + 0.92122I
8.57491 + 9.95414I 0
u = 1.361620 0.334725I
a = 0.07582 2.89140I
b = 2.60850 0.92122I
8.57491 9.95414I 0
u = 1.359900 + 0.350372I
a = 0.40622 + 2.83427I
b = 2.72449 + 0.62392I
6.2004 15.8925I 0
u = 1.359900 0.350372I
a = 0.40622 2.83427I
b = 2.72449 0.62392I
6.2004 + 15.8925I 0
u = 1.41422 + 0.03842I
a = 1.006490 0.306439I
b = 2.60422 + 0.34117I
13.60740 + 2.58481I 0
u = 1.41422 0.03842I
a = 1.006490 + 0.306439I
b = 2.60422 0.34117I
13.60740 2.58481I 0
u = 1.41341 + 0.06611I
a = 0.898179 0.480612I
b = 2.43333 + 0.51052I
11.8693 8.6563I 0
u = 1.41341 0.06611I
a = 0.898179 + 0.480612I
b = 2.43333 0.51052I
11.8693 + 8.6563I 0
u = 0.170322 + 0.434793I
a = 0.067068 0.388822I
b = 0.294850 + 0.289305I
1.34960 + 1.22997I 1.31252 1.31517I
u = 0.170322 0.434793I
a = 0.067068 + 0.388822I
b = 0.294850 0.289305I
1.34960 1.22997I 1.31252 + 1.31517I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.356420
a = 1.27045
b = 0.399618
0.765127 14.4300
11
II. I
u
2
= h474u
7
a
2
+ 726u
7
a + · · · + 845a + 670, 2u
7
a
2
+ 4u
7
a + · · · + 4a +
2, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
2u
2
a
8
=
a
1.15892a
2
u
7
1.77506au
7
+ ··· 2.06601a 1.63814
a
12
=
u
3
+ 2u
u
3
+ u
a
1
=
1.15892a
2
u
7
1.77506au
7
+ ··· 3.06601a 1.63814
0.205379a
2
u
7
1.12469au
7
+ ··· 1.66993a 1.80929
a
7
=
0.256724a
2
u
7
+ 0.405868au
7
+ ··· + 3.33741a + 1.26161
1.08802a
2
u
7
2.76773au
7
+ ··· 0.144254a 1.06112
a
9
=
u
5
+ 2u
3
u
u
7
3u
5
+ 2u
3
+ u
a
3
=
u
3
+ 2u
u
3
+ u
a
2
=
0.513447a
2
u
7
1.81174au
7
+ ··· 2.67482a 2.52323
0.398533a
2
u
7
0.420538au
7
+ ··· 2.18093a 2.41565
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
12u
4
+ 4u
3
+ 8u
2
8u + 14
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 16u
23
+ ··· + 4u + 1
c
2
, c
6
, c
7
c
8
, c
12
u
24
8u
22
+ ··· + 2u 1
c
3
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
3
c
4
, c
5
, c
10
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
3
c
9
, c
11
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
3
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
16y
23
+ ··· + 12y + 1
c
2
, c
6
, c
7
c
8
, c
12
y
24
16y
23
+ ··· 4y + 1
c
3
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
3
c
4
, c
5
, c
10
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
3
c
9
, c
11
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.076281 0.895533I
b = 0.077043 + 0.520180I
1.04066 + 1.13123I 7.41522 0.51079I
u = 1.180120 + 0.268597I
a = 0.459141 + 0.156574I
b = 0.701428 0.662460I
1.04066 + 1.13123I 7.41522 0.51079I
u = 1.180120 + 0.268597I
a = 2.78777 0.16222I
b = 1.76612 + 1.60362I
1.04066 + 1.13123I 7.41522 0.51079I
u = 1.180120 0.268597I
a = 0.076281 + 0.895533I
b = 0.077043 0.520180I
1.04066 1.13123I 7.41522 + 0.51079I
u = 1.180120 0.268597I
a = 0.459141 0.156574I
b = 0.701428 + 0.662460I
1.04066 1.13123I 7.41522 + 0.51079I
u = 1.180120 0.268597I
a = 2.78777 + 0.16222I
b = 1.76612 1.60362I
1.04066 1.13123I 7.41522 + 0.51079I
u = 0.108090 + 0.747508I
a = 0.113638 0.691981I
b = 0.212333 + 0.099676I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.108090 + 0.747508I
a = 0.963002 0.938902I
b = 0.991467 0.421518I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.108090 + 0.747508I
a = 3.56457 + 3.92845I
b = 2.48961 + 1.65363I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.108090 0.747508I
a = 0.113638 + 0.691981I
b = 0.212333 0.099676I
2.15941 2.57849I 4.27708 + 3.56796I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.108090 0.747508I
a = 0.963002 + 0.938902I
b = 0.991467 + 0.421518I
2.15941 2.57849I 4.27708 + 3.56796I
u = 0.108090 0.747508I
a = 3.56457 3.92845I
b = 2.48961 1.65363I
2.15941 2.57849I 4.27708 + 3.56796I
u = 1.37100
a = 0.636845 + 0.458999I
b = 0.572115 + 0.288256I
6.50273 13.8640
u = 1.37100
a = 0.636845 0.458999I
b = 0.572115 0.288256I
6.50273 13.8640
u = 1.37100
a = 1.57420
b = 3.34059
6.50273 13.8640
u = 1.334530 + 0.318930I
a = 0.244708 1.025470I
b = 1.179160 0.265563I
2.37968 6.44354I 9.42845 + 5.29417I
u = 1.334530 + 0.318930I
a = 0.156204 0.575525I
b = 0.287346 0.164227I
2.37968 6.44354I 9.42845 + 5.29417I
u = 1.334530 + 0.318930I
a = 0.46011 + 3.64228I
b = 2.95543 + 1.74073I
2.37968 6.44354I 9.42845 + 5.29417I
u = 1.334530 0.318930I
a = 0.244708 + 1.025470I
b = 1.179160 + 0.265563I
2.37968 + 6.44354I 9.42845 5.29417I
u = 1.334530 0.318930I
a = 0.156204 + 0.575525I
b = 0.287346 + 0.164227I
2.37968 + 6.44354I 9.42845 5.29417I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.334530 0.318930I
a = 0.46011 3.64228I
b = 2.95543 1.74073I
2.37968 + 6.44354I 9.42845 5.29417I
u = 0.463640
a = 0.636726 + 0.745558I
b = 0.458330 0.091081I
0.845036 11.8940
u = 0.463640
a = 0.636726 0.745558I
b = 0.458330 + 0.091081I
0.845036 11.8940
u = 0.463640
a = 1.47016
b = 2.12327
0.845036 11.8940
17
III. I
u
3
= hb 1, 2u
3
3u
2
+ 3a 3u + 3, u
4
3u
2
+ 3i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
2
3
a
8
=
2
3
u
3
+ u
2
+ u 1
1
a
12
=
u
3
+ 2u
u
3
+ u
a
1
=
1
3
u
3
u
2
+ u + 1
u
3
+ u 1
a
7
=
1
3
u
3
+ u
2
u 1
u
3
u + 1
a
9
=
u
3
+ 2u
u
3
+ u
a
3
=
u
2
+ 1
u
2
3
a
2
=
1
3
u
3
2u
2
+ u + 2
u
3
+ u
2
+ u 4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 12
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
(u 1)
4
c
3
, c
9
, c
11
u
4
+ 3u
2
+ 3
c
4
, c
5
, c
10
u
4
3u
2
+ 3
c
6
, c
7
, c
8
(u + 1)
4
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y 1)
4
c
3
, c
9
, c
11
(y
2
+ 3y + 3)
2
c
4
, c
5
, c
10
(y
2
3y + 3)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.271230 + 0.340625I
a = 0.696660 + 0.132080I
b = 1.00000
4.05977I 6.00000 3.46410I
u = 1.271230 0.340625I
a = 0.696660 0.132080I
b = 1.00000
4.05977I 6.00000 + 3.46410I
u = 1.271230 + 0.340625I
a = 0.30334 1.59997I
b = 1.00000
4.05977I 6.00000 + 3.46410I
u = 1.271230 0.340625I
a = 0.30334 + 1.59997I
b = 1.00000
4.05977I 6.00000 3.46410I
21
IV. I
u
4
= hb + 1, u
2
+ a + u + 1, u
4
u
2
1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
2
+ 1
a
8
=
u
2
u 1
1
a
12
=
u
3
+ 2u
u
3
+ u
a
1
=
u
3
+ u
2
+ u 1
u
3
+ u 1
a
7
=
u
3
+ u
2
+ u 1
u
3
+ u 1
a
9
=
u
3
2u
u
3
u
a
3
=
u
2
1
u
2
1
a
2
=
u
3
+ 2u
2
+ u 2
u
3
+ u
2
+ u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4
22
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
c
8
(u 1)
4
c
2
, c
12
(u + 1)
4
c
3
, c
9
, c
11
u
4
+ u
2
1
c
4
, c
5
, c
10
u
4
u
2
1
23
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y 1)
4
c
3
, c
9
, c
11
(y
2
+ y 1)
2
c
4
, c
5
, c
10
(y
2
y 1)
2
24
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.786151I
a = 1.61803 0.78615I
b = 1.00000
3.94784 1.52790
u = 0.786151I
a = 1.61803 + 0.78615I
b = 1.00000
3.94784 1.52790
u = 1.27202
a = 0.653986
b = 1.00000
3.94784 10.4720
u = 1.27202
a = 1.89005
b = 1.00000
3.94784 10.4720
25
V. I
v
1
= ha, b 1, v 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
1
0
a
5
=
1
0
a
11
=
1
0
a
6
=
1
0
a
8
=
0
1
a
12
=
1
0
a
1
=
1
1
a
7
=
1
1
a
9
=
1
0
a
3
=
1
0
a
2
=
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
26
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
u 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
c
6
, c
7
, c
8
u + 1
27
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
y 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
28
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
0 0
29
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
9
)(u
24
+ 16u
23
+ ··· + 4u + 1)(u
61
+ 24u
60
+ ··· + 3579u + 49)
c
2
((u 1)
5
)(u + 1)
4
(u
24
8u
22
+ ··· + 2u 1)
· (u
61
2u
60
+ ··· + 31u + 7)
c
3
u(u
4
+ u
2
1)(u
4
+ 3u
2
+ 3)(u
8
u
7
+ ··· + 2u 1)
3
· (u
61
+ 2u
60
+ ··· 9398u + 5482)
c
4
, c
5
, c
10
u(u
4
3u
2
+ 3)(u
4
u
2
1)(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
3
· (u
61
2u
60
+ ··· + 2u + 2)
c
6
((u 1)
4
)(u + 1)
5
(u
24
8u
22
+ ··· + 2u 1)
· (u
61
2u
60
+ ··· + 31u + 7)
c
7
, c
8
((u 1)
4
)(u + 1)
5
(u
24
8u
22
+ ··· + 2u 1)
· (u
61
+ 2u
60
+ ··· 69u + 7)
c
9
, c
11
u(u
4
+ u
2
1)(u
4
+ 3u
2
+ 3)
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
3
· (u
61
+ 6u
60
+ ··· + 736u + 128)
c
12
((u 1)
5
)(u + 1)
4
(u
24
8u
22
+ ··· + 2u 1)
· (u
61
+ 2u
60
+ ··· 69u + 7)
30
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
9
)(y
24
16y
23
+ ··· + 12y + 1)
· (y
61
+ 36y
60
+ ··· + 7535175y 2401)
c
2
, c
6
((y 1)
9
)(y
24
16y
23
+ ··· 4y + 1)(y
61
24y
60
+ ··· + 3579y 49)
c
3
y(y
2
+ y 1)
2
(y
2
+ 3y + 3)
2
· (y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
3
· (y
61
10y
60
+ ··· 675769720y 30052324)
c
4
, c
5
, c
10
y(y
2
3y + 3)
2
(y
2
y 1)
2
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
3
· (y
61
50y
60
+ ··· + 8y 4)
c
7
, c
8
, c
12
((y 1)
9
)(y
24
16y
23
+ ··· 4y + 1)(y
61
64y
60
+ ··· + 4075y 49)
c
9
, c
11
y(y
2
+ y 1)
2
(y
2
+ 3y + 3)
2
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
3
· (y
61
+ 38y
60
+ ··· + 115712y 16384)
31