10
53
(K10a
14
)
A knot diagram
1
Linearized knot diagam
4 9 5 2 8 10 1 3 7 6
Solving Sequence
2,9 3,5
4 1 8 6 7 10
c
2
c
4
c
1
c
8
c
5
c
7
c
10
c
3
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.00600 × 10
29
u
38
+ 2.48316 × 10
29
u
37
+ ··· + 8.64881 × 10
29
b + 3.57482 × 10
30
,
1.23985 × 10
30
u
38
+ 2.03123 × 10
29
u
37
+ ··· + 3.45952 × 10
30
a 6.27933 × 10
30
, u
39
+ u
38
+ ··· + 20u + 8i
I
v
1
= ha, b 1, v
3
v
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.01×10
29
u
38
+2.48×10
29
u
37
+· · ·+8.65×10
29
b+3.57×10
30
, 1.24×
10
30
u
38
+2.03×10
29
u
37
+· · ·+3.46×10
30
a6.28×10
30
, u
39
+u
38
+· · ·+20u+8i
(i) Arc colorings
a
2
=
1
0
a
9
=
0
u
a
3
=
1
u
2
a
5
=
0.358388u
38
0.0587140u
37
+ ··· 1.78450u + 1.81508
0.116317u
38
0.287110u
37
+ ··· 9.31854u 4.13331
a
4
=
0.242071u
38
0.345824u
37
+ ··· 11.1030u 2.31823
0.116317u
38
0.287110u
37
+ ··· 9.31854u 4.13331
a
1
=
0.241767u
38
+ 0.162227u
37
+ ··· + 4.40767u + 3.55101
0.116621u
38
+ 0.220941u
37
+ ··· + 6.19217u + 1.73592
a
8
=
u
u
3
+ u
a
6
=
0.242918u
38
0.232042u
37
+ ··· 7.93025u 1.41687
0.221145u
38
0.326120u
37
+ ··· 10.6121u 5.05488
a
7
=
0.198873u
38
0.0970595u
37
+ ··· + 1.83795u + 1.62354
0.233523u
38
0.0483612u
37
+ ··· + 1.48213u 1.84886
a
10
=
0.153182u
38
0.312103u
37
+ ··· 7.28402u 2.56081
0.660384u
38
+ 0.789150u
37
+ ··· + 16.3791u + 4.59908
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.333316u
38
0.171100u
37
+ ··· + 10.6866u 4.74934
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
39
4u
38
+ ··· + u + 1
c
2
, c
8
u
39
+ u
38
+ ··· + 20u + 8
c
3
u
39
+ 18u
38
+ ··· + 17u + 1
c
5
u
39
8u
38
+ ··· 168u + 49
c
6
, c
9
, c
10
u
39
2u
38
+ ··· 4u
2
+ 1
c
7
u
39
+ 2u
38
+ ··· + 6u + 9
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
39
18y
38
+ ··· + 17y 1
c
2
, c
8
y
39
+ 21y
38
+ ··· 304y 64
c
3
y
39
+ 10y
38
+ ··· + 273y 1
c
5
y
39
+ 16y
38
+ ··· 14896y 2401
c
6
, c
9
, c
10
y
39
+ 36y
38
+ ··· + 8y 1
c
7
y
39
+ 4y
38
+ ··· 648y 81
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.017070 + 0.016485I
a = 0.533352 + 0.181785I
b = 0.679795 0.572535I
4.66283 1.97475I 5.44784 + 0.24565I
u = 1.017070 0.016485I
a = 0.533352 0.181785I
b = 0.679795 + 0.572535I
4.66283 + 1.97475I 5.44784 0.24565I
u = 0.231699 + 0.952667I
a = 0.433679 0.020477I
b = 1.300720 + 0.108633I
2.67862 + 4.04441I 5.85906 4.24790I
u = 0.231699 0.952667I
a = 0.433679 + 0.020477I
b = 1.300720 0.108633I
2.67862 4.04441I 5.85906 + 4.24790I
u = 0.956761 + 0.380033I
a = 0.481763 + 0.120619I
b = 0.953268 0.489041I
1.62662 + 3.39278I 12.11270 5.92716I
u = 0.956761 0.380033I
a = 0.481763 0.120619I
b = 0.953268 + 0.489041I
1.62662 3.39278I 12.11270 + 5.92716I
u = 0.446453 + 0.963476I
a = 0.00685 2.03156I
b = 0.998340 + 0.492226I
1.05258 + 5.41055I 8.42668 7.07273I
u = 0.446453 0.963476I
a = 0.00685 + 2.03156I
b = 0.998340 0.492226I
1.05258 5.41055I 8.42668 + 7.07273I
u = 0.313799 + 0.869843I
a = 0.49321 + 2.23303I
b = 0.905691 0.426992I
2.15141 1.70381I 11.63741 + 3.75866I
u = 0.313799 0.869843I
a = 0.49321 2.23303I
b = 0.905691 + 0.426992I
2.15141 + 1.70381I 11.63741 3.75866I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.654305 + 0.610659I
a = 0.464054 0.067479I
b = 1.110300 + 0.306863I
0.106397 1.133730I 10.95849 + 0.14045I
u = 0.654305 0.610659I
a = 0.464054 + 0.067479I
b = 1.110300 0.306863I
0.106397 + 1.133730I 10.95849 0.14045I
u = 1.078760 + 0.377362I
a = 0.470618 0.137655I
b = 0.957399 + 0.572535I
3.81328 6.57302I 7.10620 + 5.57627I
u = 1.078760 0.377362I
a = 0.470618 + 0.137655I
b = 0.957399 0.572535I
3.81328 + 6.57302I 7.10620 5.57627I
u = 0.287457 + 0.756867I
a = 0.451557 + 0.026551I
b = 1.206930 0.129766I
2.53592 1.13990I 11.07531 + 5.95720I
u = 0.287457 0.756867I
a = 0.451557 0.026551I
b = 1.206930 + 0.129766I
2.53592 + 1.13990I 11.07531 5.95720I
u = 0.194269 + 0.773271I
a = 1.21955 2.26240I
b = 0.815381 + 0.342489I
2.08468 1.94841I 5.31413 1.52369I
u = 0.194269 0.773271I
a = 1.21955 + 2.26240I
b = 0.815381 0.342489I
2.08468 + 1.94841I 5.31413 + 1.52369I
u = 0.770646 + 0.144014I
a = 0.545673 0.103341I
b = 0.769146 + 0.335047I
0.798777 0.294565I 9.95022 1.12683I
u = 0.770646 0.144014I
a = 0.545673 + 0.103341I
b = 0.769146 0.335047I
0.798777 + 0.294565I 9.95022 + 1.12683I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.243035 + 1.196980I
a = 0.558338 0.947938I
b = 0.538688 + 0.783208I
3.77660 + 0.24936I 5.00470 2.68648I
u = 0.243035 1.196980I
a = 0.558338 + 0.947938I
b = 0.538688 0.783208I
3.77660 0.24936I 5.00470 + 2.68648I
u = 0.541726 + 0.535219I
a = 0.814600 0.384225I
b = 0.004189 + 0.473649I
3.03156 1.95518I 5.07609 + 3.73688I
u = 0.541726 0.535219I
a = 0.814600 + 0.384225I
b = 0.004189 0.473649I
3.03156 + 1.95518I 5.07609 3.73688I
u = 0.406069 + 1.207170I
a = 0.543323 + 0.815855I
b = 0.434521 0.849125I
3.06039 + 3.68428I 6.85695 4.07509I
u = 0.406069 1.207170I
a = 0.543323 0.815855I
b = 0.434521 + 0.849125I
3.06039 3.68428I 6.85695 + 4.07509I
u = 0.523733 + 1.187360I
a = 0.14870 1.57065I
b = 1.059740 + 0.631021I
2.20437 + 5.08722I 7.54287 2.85265I
u = 0.523733 1.187360I
a = 0.14870 + 1.57065I
b = 1.059740 0.631021I
2.20437 5.08722I 7.54287 + 2.85265I
u = 0.625085 + 1.211420I
a = 0.29116 + 1.51228I
b = 1.122760 0.637619I
0.99592 9.20929I 10.00000 + 8.02113I
u = 0.625085 1.211420I
a = 0.29116 1.51228I
b = 1.122760 + 0.637619I
0.99592 + 9.20929I 10.00000 8.02113I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.182143 + 1.351690I
a = 0.418664 + 0.974374I
b = 0.627750 0.866354I
10.13810 2.62234I 1.83668 + 2.51405I
u = 0.182143 1.351690I
a = 0.418664 0.974374I
b = 0.627750 + 0.866354I
10.13810 + 2.62234I 1.83668 2.51405I
u = 0.466572 + 1.289940I
a = 0.484403 0.782733I
b = 0.428310 + 0.923778I
8.81943 7.07830I 3.10210 + 4.00909I
u = 0.466572 1.289940I
a = 0.484403 + 0.782733I
b = 0.428310 0.923778I
8.81943 + 7.07830I 3.10210 4.00909I
u = 0.447724 + 1.316540I
a = 0.050181 + 1.390930I
b = 1.025900 0.718007I
8.92932 3.22969I 3.39800 + 2.79415I
u = 0.447724 1.316540I
a = 0.050181 1.390930I
b = 1.025900 + 0.718007I
8.92932 + 3.22969I 3.39800 2.79415I
u = 0.66765 + 1.25832I
a = 0.32850 1.43602I
b = 1.151380 + 0.661742I
6.6219 + 12.8868I 6.05446 8.07914I
u = 0.66765 1.25832I
a = 0.32850 + 1.43602I
b = 1.151380 0.661742I
6.6219 12.8868I 6.05446 + 8.07914I
u = 0.486980
a = 0.797813
b = 0.253426
0.735355 13.2930
8
II. I
v
1
= ha, b 1, v
3
v
2
+ 1i
(i) Arc colorings
a
2
=
1
0
a
9
=
v
0
a
3
=
1
0
a
5
=
0
1
a
4
=
1
1
a
1
=
0
1
a
8
=
v
0
a
6
=
v
2
1
a
7
=
v
v
a
10
=
v
2
+ v + 1
v
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = v
2
+ 3v 13
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
(u 1)
3
c
2
, c
8
u
3
c
4
(u + 1)
3
c
5
, c
7
u
3
+ u
2
1
c
6
u
3
u
2
+ 2u 1
c
9
, c
10
u
3
+ u
2
+ 2u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
4
(y 1)
3
c
2
, c
8
y
3
c
5
, c
7
y
3
y
2
+ 2y 1
c
6
, c
9
, c
10
y
3
+ 3y
2
+ 2y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.877439 + 0.744862I
a = 0
b = 1.00000
1.37919 2.82812I 10.15260 + 3.54173I
v = 0.877439 0.744862I
a = 0
b = 1.00000
1.37919 + 2.82812I 10.15260 3.54173I
v = 0.754878
a = 0
b = 1.00000
2.75839 14.6950
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
3
)(u
39
4u
38
+ ··· + u + 1)
c
2
, c
8
u
3
(u
39
+ u
38
+ ··· + 20u + 8)
c
3
((u 1)
3
)(u
39
+ 18u
38
+ ··· + 17u + 1)
c
4
((u + 1)
3
)(u
39
4u
38
+ ··· + u + 1)
c
5
(u
3
+ u
2
1)(u
39
8u
38
+ ··· 168u + 49)
c
6
(u
3
u
2
+ 2u 1)(u
39
2u
38
+ ··· 4u
2
+ 1)
c
7
(u
3
+ u
2
1)(u
39
+ 2u
38
+ ··· + 6u + 9)
c
9
, c
10
(u
3
+ u
2
+ 2u + 1)(u
39
2u
38
+ ··· 4u
2
+ 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
((y 1)
3
)(y
39
18y
38
+ ··· + 17y 1)
c
2
, c
8
y
3
(y
39
+ 21y
38
+ ··· 304y 64)
c
3
((y 1)
3
)(y
39
+ 10y
38
+ ··· + 273y 1)
c
5
(y
3
y
2
+ 2y 1)(y
39
+ 16y
38
+ ··· 14896y 2401)
c
6
, c
9
, c
10
(y
3
+ 3y
2
+ 2y 1)(y
39
+ 36y
38
+ ··· + 8y 1)
c
7
(y
3
y
2
+ 2y 1)(y
39
+ 4y
38
+ ··· 648y 81)
14