12a
0584
(K12a
0584
)
A knot diagram
1
Linearized knot diagam
3 7 9 10 11 8 2 1 12 5 6 4
Solving Sequence
5,11
6 12 10 4 1 9 3 2 8 7
c
5
c
11
c
10
c
4
c
12
c
9
c
3
c
1
c
8
c
7
c
2
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
71
+ u
70
+ ··· + 2u 1i
* 1 irreducible components of dim
C
= 0, with total 71 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
71
+ u
70
+ · · · + 2u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
10
=
u
u
a
4
=
u
2
+ 1
u
2
a
1
=
u
7
+ 4u
5
4u
3
u
7
+ 3u
5
2u
3
+ u
a
9
=
u
5
+ 2u
3
+ u
u
7
+ 3u
5
2u
3
+ u
a
3
=
u
14
+ 7u
12
16u
10
+ 11u
8
+ 2u
6
+ 1
u
16
+ 8u
14
24u
12
+ 34u
10
26u
8
+ 14u
6
4u
4
a
2
=
u
37
+ 20u
35
+ ··· 2u
3
u
u
39
+ 21u
37
+ ··· 2u
3
+ u
a
8
=
u
21
12u
19
+ ··· + 2u
3
+ u
u
21
11u
19
+ ··· u
3
+ u
a
7
=
u
44
+ 25u
42
+ ··· + u
2
+ 1
u
44
+ 24u
42
+ ··· 3u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
69
+ 160u
67
+ ··· + 16u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
71
+ 23u
70
+ ··· 2u
2
1
c
2
, c
7
u
71
+ u
70
+ ··· 2u
3
+ 1
c
3
u
71
+ u
70
+ ··· + 2490u + 457
c
4
, c
5
, c
10
c
11
u
71
u
70
+ ··· + 2u + 1
c
8
u
71
5u
70
+ ··· 2u + 3
c
9
u
71
19u
70
+ ··· + 1600u 89
c
12
u
71
+ 5u
70
+ ··· 7752u 1305
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
71
+ 51y
70
+ ··· 4y 1
c
2
, c
7
y
71
+ 23y
70
+ ··· 2y
2
1
c
3
y
71
17y
70
+ ··· + 8704460y 208849
c
4
, c
5
, c
10
c
11
y
71
81y
70
+ ··· 6y
2
1
c
8
y
71
+ 3y
70
+ ··· 788y 9
c
9
y
71
9y
70
+ ··· 14236y 7921
c
12
y
71
+ 23y
70
+ ··· 38225196y 1703025
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.694520 + 0.502040I
1.47824 12.20590I 2.00000 + 10.79261I
u = 0.694520 0.502040I
1.47824 + 12.20590I 2.00000 10.79261I
u = 0.686109 + 0.499545I
2.44009 + 6.44670I 1.10008 6.01884I
u = 0.686109 0.499545I
2.44009 6.44670I 1.10008 + 6.01884I
u = 0.700258 + 0.474049I
3.94714 6.56549I 8.76056 + 8.35836I
u = 0.700258 0.474049I
3.94714 + 6.56549I 8.76056 8.35836I
u = 0.819404 + 0.199766I
0.41421 6.03410I 6.32366 + 3.95661I
u = 0.819404 0.199766I
0.41421 + 6.03410I 6.32366 3.95661I
u = 0.742678 + 0.347222I
2.39396 + 5.03136I 8.06361 7.61297I
u = 0.742678 0.347222I
2.39396 5.03136I 8.06361 + 7.61297I
u = 0.773774 + 0.266762I
5.28295 0.55811I 12.29152 0.26685I
u = 0.773774 0.266762I
5.28295 + 0.55811I 12.29152 + 0.26685I
u = 0.703024 + 0.413777I
1.93445 0.81590I 7.02624 + 1.90766I
u = 0.703024 0.413777I
1.93445 + 0.81590I 7.02624 1.90766I
u = 0.795616 + 0.175367I
0.476047 + 0.465191I 4.66638 + 1.01034I
u = 0.795616 0.175367I
0.476047 0.465191I 4.66638 1.01034I
u = 0.667806 + 0.461108I
0.10592 + 4.36995I 0.97055 7.27867I
u = 0.667806 0.461108I
0.10592 4.36995I 0.97055 + 7.27867I
u = 0.596181 + 0.486156I
4.19049 + 3.85045I 1.36830 6.50077I
u = 0.596181 0.486156I
4.19049 3.85045I 1.36830 + 6.50077I
u = 0.575793 + 0.484978I
3.74442 + 1.85708I 0.613629 + 0.863069I
u = 0.575793 0.484978I
3.74442 1.85708I 0.613629 0.863069I
u = 0.664102 + 0.290971I
1.30641 0.83369I 5.07629 + 1.41246I
u = 0.664102 0.290971I
1.30641 + 0.83369I 5.07629 1.41246I
u = 0.341435 + 0.521053I
4.42335 5.35992I 2.64002 + 6.60618I
u = 0.341435 0.521053I
4.42335 + 5.35992I 2.64002 6.60618I
u = 0.319103 + 0.523340I
4.99394 0.33969I 4.01365 0.84861I
u = 0.319103 0.523340I
4.99394 + 0.33969I 4.01365 + 0.84861I
u = 0.190495 + 0.581319I
2.94888 + 8.50212I 0.66061 5.67594I
u = 0.190495 0.581319I
2.94888 8.50212I 0.66061 + 5.67594I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.201016 + 0.571795I
3.85337 2.77463I 2.53052 + 0.66682I
u = 0.201016 0.571795I
3.85337 + 2.77463I 2.53052 0.66682I
u = 0.155597 + 0.545445I
2.37528 + 3.05928I 5.05542 3.36210I
u = 0.155597 0.545445I
2.37528 3.05928I 5.05542 + 3.36210I
u = 1.44840 + 0.04331I
0.50030 1.43547I 0
u = 1.44840 0.04331I
0.50030 + 1.43547I 0
u = 1.45203 + 0.05521I
1.21241 + 7.20699I 0
u = 1.45203 0.05521I
1.21241 7.20699I 0
u = 0.379794 + 0.378597I
0.70736 1.31273I 3.33366 + 6.00038I
u = 0.379794 0.378597I
0.70736 + 1.31273I 3.33366 6.00038I
u = 0.209559 + 0.491967I
1.21382 1.02583I 3.75907 + 1.41426I
u = 0.209559 0.491967I
1.21382 + 1.02583I 3.75907 1.41426I
u = 1.47502
3.93014 0
u = 1.49713 + 0.03711I
6.82266 + 2.52685I 0
u = 1.49713 0.03711I
6.82266 2.52685I 0
u = 0.049027 + 0.494041I
0.09979 2.25257I 2.19284 + 3.15175I
u = 0.049027 0.494041I
0.09979 + 2.25257I 2.19284 3.15175I
u = 1.56274 + 0.12674I
3.44771 + 0.30950I 0
u = 1.56274 0.12674I
3.44771 0.30950I 0
u = 1.56921 + 0.13152I
3.10433 6.06433I 0
u = 1.56921 0.13152I
3.10433 + 6.06433I 0
u = 1.59558 + 0.13224I
7.79148 6.56095I 0
u = 1.59558 0.13224I
7.79148 + 6.56095I 0
u = 1.59911 + 0.08798I
9.08336 + 2.27829I 0
u = 1.59911 0.08798I
9.08336 2.27829I 0
u = 1.59987 + 0.14555I
5.30300 8.84275I 0
u = 1.59987 0.14555I
5.30300 + 8.84275I 0
u = 1.60443 + 0.12032I
9.79272 + 2.81421I 0
u = 1.60443 0.12032I
9.79272 2.81421I 0
u = 1.60276 + 0.14672I
6.3061 + 14.6215I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.60276 0.14672I
6.3061 14.6215I 0
u = 1.60505 + 0.13731I
11.7781 + 8.8433I 0
u = 1.60505 0.13731I
11.7781 8.8433I 0
u = 1.61040 + 0.05873I
7.69046 + 0.45935I 0
u = 1.61040 0.05873I
7.69046 0.45935I 0
u = 1.61378 + 0.09699I
10.45380 6.69233I 0
u = 1.61378 0.09699I
10.45380 + 6.69233I 0
u = 1.61660 + 0.07746I
13.45630 0.75227I 0
u = 1.61660 0.07746I
13.45630 + 0.75227I 0
u = 1.61866 + 0.05966I
8.71597 + 5.04086I 0
u = 1.61866 0.05966I
8.71597 5.04086I 0
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
71
+ 23u
70
+ ··· 2u
2
1
c
2
, c
7
u
71
+ u
70
+ ··· 2u
3
+ 1
c
3
u
71
+ u
70
+ ··· + 2490u + 457
c
4
, c
5
, c
10
c
11
u
71
u
70
+ ··· + 2u + 1
c
8
u
71
5u
70
+ ··· 2u + 3
c
9
u
71
19u
70
+ ··· + 1600u 89
c
12
u
71
+ 5u
70
+ ··· 7752u 1305
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
71
+ 51y
70
+ ··· 4y 1
c
2
, c
7
y
71
+ 23y
70
+ ··· 2y
2
1
c
3
y
71
17y
70
+ ··· + 8704460y 208849
c
4
, c
5
, c
10
c
11
y
71
81y
70
+ ··· 6y
2
1
c
8
y
71
+ 3y
70
+ ··· 788y 9
c
9
y
71
9y
70
+ ··· 14236y 7921
c
12
y
71
+ 23y
70
+ ··· 38225196y 1703025
9