12a
0585
(K12a
0585
)
A knot diagram
1
Linearized knot diagam
3 7 9 10 11 8 2 1 12 6 5 4
Solving Sequence
6,10
11 5 12 4 1 9 3 8 7 2
c
10
c
5
c
11
c
4
c
12
c
9
c
3
c
8
c
6
c
2
c
1
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
90
u
89
+ ··· 3u + 1i
* 1 irreducible components of dim
C
= 0, with total 90 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
90
u
89
+ · · · 3u + 1i
(i) Arc colorings
a
6
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
5
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
4
=
u
3
+ 2u
u
3
+ u
a
1
=
u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1
u
10
+ 4u
8
+ 5u
6
+ 2u
4
+ u
2
a
9
=
u
6
3u
4
2u
2
+ 1
u
8
4u
6
4u
4
a
3
=
u
17
+ 8u
15
+ 25u
13
+ 36u
11
+ 19u
9
4u
7
2u
5
+ 4u
3
+ u
u
19
+ 9u
17
+ 32u
15
+ 55u
13
+ 43u
11
+ 9u
9
+ 4u
5
+ u
3
+ u
a
8
=
u
28
+ 13u
26
+ ··· u
2
+ 1
u
28
+ 12u
26
+ ··· + 2u
6
3u
4
a
7
=
u
57
26u
55
+ ··· + 2u
3
u
u
57
25u
55
+ ··· + 3u
5
+ u
a
2
=
u
46
+ 21u
44
+ ··· + 6u
4
+ 1
u
48
+ 22u
46
+ ··· + 2u
4
+ 2u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
89
4u
88
+ ··· + 20u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
90
+ 29u
89
+ ··· + u + 1
c
2
, c
7
u
90
+ u
89
+ ··· u + 1
c
3
u
90
+ u
89
+ ··· + 5329u + 2941
c
4
u
90
u
89
+ ··· + 11u + 1
c
5
, c
10
, c
11
u
90
+ u
89
+ ··· + 3u + 1
c
8
u
90
5u
89
+ ··· u + 1
c
9
u
90
19u
89
+ ··· 88451u + 4523
c
12
u
90
+ 7u
89
+ ··· + 941u + 55
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
90
+ 65y
89
+ ··· + 5y + 1
c
2
, c
7
y
90
+ 29y
89
+ ··· + y + 1
c
3
y
90
27y
89
+ ··· 251343687y + 8649481
c
4
y
90
+ 5y
89
+ ··· 47y + 1
c
5
, c
10
, c
11
y
90
+ 81y
89
+ ··· + y + 1
c
8
y
90
+ y
89
+ ··· + 29y + 1
c
9
y
90
+ 29y
89
+ ··· + 330837793y + 20457529
c
12
y
90
+ 13y
89
+ ··· + 155009y + 3025
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.092360 + 0.990486I
0.19734 2.09371I 0
u = 0.092360 0.990486I
0.19734 + 2.09371I 0
u = 0.174167 + 1.065840I
2.74452 + 3.55694I 0
u = 0.174167 1.065840I
2.74452 3.55694I 0
u = 0.109638 + 1.103100I
1.18483 1.77466I 0
u = 0.109638 1.103100I
1.18483 + 1.77466I 0
u = 0.208911 + 1.105270I
2.33069 + 9.15031I 0
u = 0.208911 1.105270I
2.33069 9.15031I 0
u = 0.196314 + 1.116870I
3.28147 3.51353I 0
u = 0.196314 1.116870I
3.28147 + 3.51353I 0
u = 0.708793 + 0.299494I
1.68759 12.58900I 1.92424 + 10.40743I
u = 0.708793 0.299494I
1.68759 + 12.58900I 1.92424 10.40743I
u = 0.703274 + 0.301535I
2.64941 + 6.81481I 0.10297 5.63570I
u = 0.703274 0.301535I
2.64941 6.81481I 0.10297 + 5.63570I
u = 0.700545 + 0.282219I
3.78579 6.94246I 7.67165 + 8.00926I
u = 0.700545 0.282219I
3.78579 + 6.94246I 7.67165 8.00926I
u = 0.678301 + 0.287933I
0.05334 + 4.69227I 0.02736 6.79114I
u = 0.678301 0.287933I
0.05334 4.69227I 0.02736 + 6.79114I
u = 0.384609 + 0.625740I
2.97480 + 8.70845I 0.78880 5.17975I
u = 0.384609 0.625740I
2.97480 8.70845I 0.78880 + 5.17975I
u = 0.646374 + 0.328778I
4.40452 + 4.07878I 2.14162 6.13926I
u = 0.646374 0.328778I
4.40452 4.07878I 2.14162 + 6.13926I
u = 0.677349 + 0.249229I
1.86025 1.15632I 5.97482 + 1.58422I
u = 0.677349 0.249229I
1.86025 + 1.15632I 5.97482 1.58422I
u = 0.386229 + 0.609030I
3.89211 2.96681I 2.65198 + 0.23669I
u = 0.386229 0.609030I
3.89211 + 2.96681I 2.65198 0.23669I
u = 0.633442 + 0.335557I
3.95811 + 1.65651I 1.36233 + 0.56944I
u = 0.633442 0.335557I
3.95811 1.65651I 1.36233 0.56944I
u = 0.677616 + 0.197513I
2.43312 + 5.36697I 7.06462 7.35684I
u = 0.677616 0.197513I
2.43312 5.36697I 7.06462 + 7.35684I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.031544 + 1.295490I
5.21152 2.64980I 0
u = 0.031544 1.295490I
5.21152 + 2.64980I 0
u = 0.322486 + 0.620173I
2.39255 + 3.21804I 4.96336 2.89069I
u = 0.322486 0.620173I
2.39255 3.21804I 4.96336 + 2.89069I
u = 0.669378 + 0.147993I
5.42459 0.27478I 11.47130 0.26528I
u = 0.669378 0.147993I
5.42459 + 0.27478I 11.47130 + 0.26528I
u = 0.673819 + 0.103290I
0.64886 5.80042I 5.73200 + 4.09941I
u = 0.673819 0.103290I
0.64886 + 5.80042I 5.73200 4.09941I
u = 0.472908 + 0.471039I
4.58313 5.28881I 3.03353 + 6.59017I
u = 0.472908 0.471039I
4.58313 + 5.28881I 3.03353 6.59017I
u = 0.455824 + 0.486101I
5.13756 0.42861I 4.31086 0.88245I
u = 0.455824 0.486101I
5.13756 + 0.42861I 4.31086 + 0.88245I
u = 0.655716 + 0.096723I
0.258872 + 0.271367I 4.04834 + 0.93869I
u = 0.655716 0.096723I
0.258872 0.271367I 4.04834 0.93869I
u = 0.237515 + 1.320140I
3.78695 2.51925I 0
u = 0.237515 1.320140I
3.78695 + 2.51925I 0
u = 0.216994 + 1.327150I
4.68022 2.85442I 0
u = 0.216994 1.327150I
4.68022 + 2.85442I 0
u = 0.130514 + 0.640490I
0.18588 2.20059I 2.47638 + 3.41832I
u = 0.130514 0.640490I
0.18588 + 2.20059I 2.47638 3.41832I
u = 0.621324 + 0.194532I
1.33310 1.05611I 4.15239 + 1.37352I
u = 0.621324 0.194532I
1.33310 + 1.05611I 4.15239 1.37352I
u = 0.251712 + 1.349720I
0.70074 + 3.04867I 0
u = 0.251712 1.349720I
0.70074 3.04867I 0
u = 0.336547 + 0.528039I
1.25107 1.13212I 3.66694 + 1.15328I
u = 0.336547 0.528039I
1.25107 + 1.13212I 3.66694 1.15328I
u = 0.263703 + 1.372860I
2.54773 + 8.78045I 0
u = 0.263703 1.372860I
2.54773 8.78045I 0
u = 0.244027 + 1.378980I
3.69075 4.21685I 0
u = 0.244027 1.378980I
3.69075 + 4.21685I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.167948 + 1.402410I
4.84787 3.56837I 0
u = 0.167948 1.402410I
4.84787 + 3.56837I 0
u = 0.26458 + 1.40036I
3.40298 4.58323I 0
u = 0.26458 1.40036I
3.40298 + 4.58323I 0
u = 0.12081 + 1.42071I
3.80098 + 1.71948I 0
u = 0.12081 1.42071I
3.80098 1.71948I 0
u = 0.14262 + 1.42305I
7.25500 + 0.67184I 0
u = 0.14262 1.42305I
7.25500 0.67184I 0
u = 0.26571 + 1.41535I
5.49670 + 8.13758I 0
u = 0.26571 1.41535I
5.49670 8.13758I 0
u = 0.27503 + 1.41433I
1.63219 10.49430I 0
u = 0.27503 1.41433I
1.63219 + 10.49430I 0
u = 0.12638 + 1.44027I
10.26750 1.23375I 0
u = 0.12638 1.44027I
10.26750 + 1.23375I 0
u = 0.12126 + 1.44108I
9.40156 + 7.03291I 0
u = 0.12126 1.44108I
9.40156 7.03291I 0
u = 0.24469 + 1.42692I
9.59469 1.56240I 0
u = 0.24469 1.42692I
9.59469 + 1.56240I 0
u = 0.16537 + 1.43882I
11.22680 + 1.83058I 0
u = 0.16537 1.43882I
11.22680 1.83058I 0
u = 0.24986 + 1.42658I
10.02060 + 7.36006I 0
u = 0.24986 1.42658I
10.02060 7.36006I 0
u = 0.17139 + 1.43884I
10.64090 7.63501I 0
u = 0.17139 1.43884I
10.64090 + 7.63501I 0
u = 0.27478 + 1.42281I
8.16280 + 10.37730I 0
u = 0.27478 1.42281I
8.16280 10.37730I 0
u = 0.27732 + 1.42248I
7.1924 16.1793I 0
u = 0.27732 1.42248I
7.1924 + 16.1793I 0
u = 0.431223 + 0.324576I
0.62645 1.33595I 2.95240 + 5.88577I
u = 0.431223 0.324576I
0.62645 + 1.33595I 2.95240 5.88577I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
90
+ 29u
89
+ ··· + u + 1
c
2
, c
7
u
90
+ u
89
+ ··· u + 1
c
3
u
90
+ u
89
+ ··· + 5329u + 2941
c
4
u
90
u
89
+ ··· + 11u + 1
c
5
, c
10
, c
11
u
90
+ u
89
+ ··· + 3u + 1
c
8
u
90
5u
89
+ ··· u + 1
c
9
u
90
19u
89
+ ··· 88451u + 4523
c
12
u
90
+ 7u
89
+ ··· + 941u + 55
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
90
+ 65y
89
+ ··· + 5y + 1
c
2
, c
7
y
90
+ 29y
89
+ ··· + y + 1
c
3
y
90
27y
89
+ ··· 251343687y + 8649481
c
4
y
90
+ 5y
89
+ ··· 47y + 1
c
5
, c
10
, c
11
y
90
+ 81y
89
+ ··· + y + 1
c
8
y
90
+ y
89
+ ··· + 29y + 1
c
9
y
90
+ 29y
89
+ ··· + 330837793y + 20457529
c
12
y
90
+ 13y
89
+ ··· + 155009y + 3025
9