12a
0590
(K12a
0590
)
A knot diagram
1
Linearized knot diagam
3 7 9 11 8 2 5 6 12 1 4 10
Solving Sequence
5,8
6
9,11
4 12 10 3 7 2 1
c
5
c
8
c
4
c
11
c
9
c
3
c
7
c
2
c
1
c
6
, c
10
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h1.68464 × 10
28
u
87
+ 9.72953 × 10
28
u
86
+ ··· + 7.00197 × 10
26
b + 1.37834 × 10
28
,
1.24196 × 10
28
u
87
9.51690 × 10
28
u
86
+ ··· + 1.40039 × 10
27
a 3.17252 × 10
28
, u
88
+ 7u
87
+ ··· 5u + 1i
I
u
2
= hb, u
7
+ 2u
6
2u
5
4u
4
+ 2u
3
+ u
2
+ a u + 3, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
I
u
3
= ha
4
a
3
+ a
2
+ b 2a + 1, a
5
a
4
+ a
3
2a
2
+ a 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 101 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h1.68×10
28
u
87
+9.73×10
28
u
86
+· · ·+7.00×10
26
b+1.38×10
28
, 1.24×
10
28
u
87
9.52×10
28
u
86
+· · ·+1.40×10
27
a3.17×10
28
, u
88
+7u
87
+· · ·5u+1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
6
=
1
u
2
a
9
=
u
u
3
+ u
a
11
=
8.86862u
87
+ 67.9587u
86
+ ··· 105.878u + 22.6545
24.0595u
87
138.954u
86
+ ··· + 110.889u 19.6850
a
4
=
25.3526u
87
+ 133.819u
86
+ ··· 76.7949u + 11.9623
89.2486u
87
+ 498.120u
86
+ ··· 348.549u + 61.5438
a
12
=
17.3831u
87
77.2993u
86
+ ··· 14.1162u + 6.54485
73.5892u
87
406.913u
86
+ ··· + 271.995u 48.9600
a
10
=
24.9048u
87
+ 121.952u
86
+ ··· 30.6185u 0.170725
107.854u
87
+ 601.429u
86
+ ··· 418.226u + 74.6075
a
3
=
110.590u
87
+ 613.566u
86
+ ··· 427.222u + 73.2837
162.309u
87
+ 914.917u
86
+ ··· 667.930u + 117.137
a
7
=
u
u
a
2
=
177.819u
87
+ 1015.19u
86
+ ··· 782.351u + 133.966
229.538u
87
+ 1316.54u
86
+ ··· 1023.06u + 177.819
a
1
=
17.8946u
87
+ 106.795u
86
+ ··· 102.627u + 15.4769
61.3214u
87
+ 344.013u
86
+ ··· 248.957u + 43.8200
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
3994510142988588901229060665
700197468586696191749097992
u
87
42648575021416709506457400371
700197468586696191749097992
u
86
+ ··· +
107123801345113766348171177997
700197468586696191749097992
u
4216109697287061694606989229
175049367146674047937274498
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
88
+ 36u
87
+ ··· + 16896u + 1024
c
2
, c
6
u
88
2u
87
+ ··· + 64u 32
c
3
u
88
3u
87
+ ··· + 49703u 30649
c
4
, c
11
u
88
2u
87
+ ··· 1664u 256
c
5
, c
7
, c
8
u
88
7u
87
+ ··· + 5u + 1
c
9
, c
10
, c
12
u
88
10u
87
+ ··· 13u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
88
+ 24y
87
+ ··· 10092544y + 1048576
c
2
, c
6
y
88
36y
87
+ ··· 16896y + 1024
c
3
y
88
37y
87
+ ··· 880685877y + 939361201
c
4
, c
11
y
88
+ 54y
87
+ ··· 49152y + 65536
c
5
, c
7
, c
8
y
88
77y
87
+ ··· 7y + 1
c
9
, c
10
, c
12
y
88
86y
87
+ ··· 85y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.888121 + 0.465628I
a = 0.674944 0.581430I
b = 1.115510 0.134578I
5.34037 + 0.66509I 0
u = 0.888121 0.465628I
a = 0.674944 + 0.581430I
b = 1.115510 + 0.134578I
5.34037 0.66509I 0
u = 0.766339 + 0.598583I
a = 1.036980 0.856681I
b = 0.42193 1.40540I
10.41430 4.71583I 0
u = 0.766339 0.598583I
a = 1.036980 + 0.856681I
b = 0.42193 + 1.40540I
10.41430 + 4.71583I 0
u = 0.952850 + 0.465179I
a = 0.065021 0.913422I
b = 0.351118 1.102560I
2.96134 + 2.94865I 0
u = 0.952850 0.465179I
a = 0.065021 + 0.913422I
b = 0.351118 + 1.102560I
2.96134 2.94865I 0
u = 0.800920 + 0.458340I
a = 0.73265 + 1.28159I
b = 0.112227 + 1.047930I
3.55064 1.70767I 0
u = 0.800920 0.458340I
a = 0.73265 1.28159I
b = 0.112227 1.047930I
3.55064 + 1.70767I 0
u = 0.238802 + 0.874394I
a = 1.51165 0.29886I
b = 0.64367 1.34705I
6.87264 11.71080I 0
u = 0.238802 0.874394I
a = 1.51165 + 0.29886I
b = 0.64367 + 1.34705I
6.87264 + 11.71080I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.106230 + 0.101887I
a = 0.38448 + 2.75149I
b = 0.253569 + 0.477806I
3.31594 0.58556I 0
u = 1.106230 0.101887I
a = 0.38448 2.75149I
b = 0.253569 0.477806I
3.31594 + 0.58556I 0
u = 1.074860 + 0.294544I
a = 0.609880 + 0.504609I
b = 0.493783 + 0.368228I
0.723913 0.558805I 0
u = 1.074860 0.294544I
a = 0.609880 0.504609I
b = 0.493783 0.368228I
0.723913 + 0.558805I 0
u = 0.998684 + 0.532410I
a = 0.123794 + 0.448994I
b = 0.58280 + 1.35034I
9.19064 + 6.74935I 0
u = 0.998684 0.532410I
a = 0.123794 0.448994I
b = 0.58280 1.35034I
9.19064 6.74935I 0
u = 0.394607 + 0.770272I
a = 0.455783 + 0.010772I
b = 0.31689 + 1.42777I
9.29942 0.08924I 0
u = 0.394607 0.770272I
a = 0.455783 0.010772I
b = 0.31689 1.42777I
9.29942 + 0.08924I 0
u = 0.236702 + 0.827946I
a = 1.33516 + 0.60966I
b = 0.428462 + 1.161060I
0.75062 7.56823I 0
u = 0.236702 0.827946I
a = 1.33516 0.60966I
b = 0.428462 1.161060I
0.75062 + 7.56823I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.257930 + 0.804225I
a = 0.992899 0.708956I
b = 1.176510 + 0.257378I
3.37075 5.18603I 0
u = 0.257930 0.804225I
a = 0.992899 + 0.708956I
b = 1.176510 0.257378I
3.37075 + 5.18603I 0
u = 0.044598 + 0.812501I
a = 0.012409 0.949891I
b = 0.068037 + 0.976812I
0.94317 2.91824I 8.00000 + 0.I
u = 0.044598 0.812501I
a = 0.012409 + 0.949891I
b = 0.068037 0.976812I
0.94317 + 2.91824I 8.00000 + 0.I
u = 0.265848 + 0.760527I
a = 0.709338 0.763779I
b = 0.074648 1.085590I
1.85509 2.57254I 0
u = 0.265848 0.760527I
a = 0.709338 + 0.763779I
b = 0.074648 + 1.085590I
1.85509 + 2.57254I 0
u = 0.164802 + 0.765395I
a = 0.640282 + 0.424932I
b = 0.640037 0.265485I
1.98407 3.37950I 3.18324 + 4.49505I
u = 0.164802 0.765395I
a = 0.640282 0.424932I
b = 0.640037 + 0.265485I
1.98407 + 3.37950I 3.18324 4.49505I
u = 1.210690 + 0.142812I
a = 0.167563 + 0.494552I
b = 0.564547 + 1.141500I
8.03151 3.54347I 0
u = 1.210690 0.142812I
a = 0.167563 0.494552I
b = 0.564547 1.141500I
8.03151 + 3.54347I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.239120 + 0.245897I
a = 0.512434 0.571361I
b = 0.566252 + 0.257444I
1.10788 1.71772I 0
u = 1.239120 0.245897I
a = 0.512434 + 0.571361I
b = 0.566252 0.257444I
1.10788 + 1.71772I 0
u = 1.215600 + 0.383630I
a = 0.934428 0.097206I
b = 0.033207 1.038470I
4.54745 1.38520I 0
u = 1.215600 0.383630I
a = 0.934428 + 0.097206I
b = 0.033207 + 1.038470I
4.54745 + 1.38520I 0
u = 1.276630 + 0.183299I
a = 0.215638 0.758974I
b = 0.582952 0.942243I
2.95506 + 0.13185I 0
u = 1.276630 0.183299I
a = 0.215638 + 0.758974I
b = 0.582952 + 0.942243I
2.95506 0.13185I 0
u = 0.051522 + 0.675391I
a = 0.742113 + 0.645879I
b = 0.611315 0.427751I
2.51572 1.61584I 1.91976 + 3.16837I
u = 0.051522 0.675391I
a = 0.742113 0.645879I
b = 0.611315 + 0.427751I
2.51572 + 1.61584I 1.91976 3.16837I
u = 1.314380 + 0.174281I
a = 1.09840 + 2.65275I
b = 0.010805 + 1.079500I
4.65633 0.63571I 0
u = 1.314380 0.174281I
a = 1.09840 2.65275I
b = 0.010805 1.079500I
4.65633 + 0.63571I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.320720 + 0.187553I
a = 0.655900 0.911111I
b = 0.908877 0.545626I
6.01527 + 1.89183I 0
u = 1.320720 0.187553I
a = 0.655900 + 0.911111I
b = 0.908877 + 0.545626I
6.01527 1.89183I 0
u = 1.307460 + 0.264842I
a = 0.436161 + 0.563621I
b = 0.704898 + 0.536481I
1.74045 + 5.01419I 0
u = 1.307460 0.264842I
a = 0.436161 0.563621I
b = 0.704898 0.536481I
1.74045 5.01419I 0
u = 1.292640 + 0.344864I
a = 0.615494 0.130607I
b = 0.165716 0.926745I
5.11018 + 7.07530I 0
u = 1.292640 0.344864I
a = 0.615494 + 0.130607I
b = 0.165716 + 0.926745I
5.11018 7.07530I 0
u = 0.174131 + 0.636836I
a = 2.02360 0.48082I
b = 0.580461 1.285720I
5.14037 + 6.25877I 9.44624 3.66252I
u = 0.174131 0.636836I
a = 2.02360 + 0.48082I
b = 0.580461 + 1.285720I
5.14037 6.25877I 9.44624 + 3.66252I
u = 1.330870 + 0.207803I
a = 0.933904 + 0.972883I
b = 1.166170 0.198096I
6.30741 3.16964I 0
u = 1.330870 0.207803I
a = 0.933904 0.972883I
b = 1.166170 + 0.198096I
6.30741 + 3.16964I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.332230 + 0.235913I
a = 1.36376 2.55428I
b = 0.386394 1.149300I
3.80107 5.54437I 0
u = 1.332230 0.235913I
a = 1.36376 + 2.55428I
b = 0.386394 + 1.149300I
3.80107 + 5.54437I 0
u = 1.339550 + 0.224805I
a = 0.091229 + 1.306420I
b = 0.487922 + 0.888767I
5.42509 + 4.45293I 0
u = 1.339550 0.224805I
a = 0.091229 1.306420I
b = 0.487922 0.888767I
5.42509 4.45293I 0
u = 1.380100 + 0.123580I
a = 1.09435 2.36932I
b = 0.37266 1.42969I
11.86110 + 2.15849I 0
u = 1.380100 0.123580I
a = 1.09435 + 2.36932I
b = 0.37266 + 1.42969I
11.86110 2.15849I 0
u = 1.365220 + 0.261535I
a = 1.33626 + 2.41346I
b = 0.61664 + 1.35909I
10.02730 9.55714I 0
u = 1.365220 0.261535I
a = 1.33626 2.41346I
b = 0.61664 1.35909I
10.02730 + 9.55714I 0
u = 1.363890 + 0.319129I
a = 0.234330 0.481461I
b = 0.705464 + 0.206220I
2.84821 + 7.30244I 0
u = 1.363890 0.319129I
a = 0.234330 + 0.481461I
b = 0.705464 0.206220I
2.84821 7.30244I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.40144
a = 0.385644
b = 0.577672
7.10454 0
u = 0.087677 + 0.585925I
a = 1.96671 + 0.65542I
b = 0.433173 + 1.031780I
0.69910 + 2.52777I 5.84354 3.35799I
u = 0.087677 0.585925I
a = 1.96671 0.65542I
b = 0.433173 1.031780I
0.69910 2.52777I 5.84354 + 3.35799I
u = 0.563116
a = 0.509143
b = 0.313068
0.958674 9.85690
u = 1.40715 + 0.30877I
a = 0.99962 + 1.99298I
b = 0.120608 + 1.188840I
7.16857 + 6.45126I 0
u = 1.40715 0.30877I
a = 0.99962 1.99298I
b = 0.120608 1.188840I
7.16857 6.45126I 0
u = 0.124503 + 0.544345I
a = 1.27598 0.81112I
b = 0.260698 0.771913I
0.80366 1.58561I 10.67225 + 2.90476I
u = 0.124503 0.544345I
a = 1.27598 + 0.81112I
b = 0.260698 + 0.771913I
0.80366 + 1.58561I 10.67225 2.90476I
u = 1.40680 + 0.34051I
a = 1.26967 1.96871I
b = 0.455387 1.216770I
5.97118 + 11.78330I 0
u = 1.40680 0.34051I
a = 1.26967 + 1.96871I
b = 0.455387 + 1.216770I
5.97118 11.78330I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.41173 + 0.32636I
a = 0.451797 + 0.801134I
b = 1.251800 0.295347I
8.68021 + 9.27069I 0
u = 1.41173 0.32636I
a = 0.451797 0.801134I
b = 1.251800 + 0.295347I
8.68021 9.27069I 0
u = 1.41652 + 0.36230I
a = 1.32614 + 1.85531I
b = 0.68460 + 1.36460I
12.1310 + 16.1617I 0
u = 1.41652 0.36230I
a = 1.32614 1.85531I
b = 0.68460 1.36460I
12.1310 16.1617I 0
u = 1.45238 + 0.27357I
a = 0.98226 1.57277I
b = 0.26475 1.52039I
15.2401 + 3.8156I 0
u = 1.45238 0.27357I
a = 0.98226 + 1.57277I
b = 0.26475 + 1.52039I
15.2401 3.8156I 0
u = 1.47888 + 0.02352I
a = 0.11238 2.43472I
b = 0.196285 1.246890I
11.09960 + 2.70583I 0
u = 1.47888 0.02352I
a = 0.11238 + 2.43472I
b = 0.196285 + 1.246890I
11.09960 2.70583I 0
u = 1.48451
a = 0.899695
b = 1.29707
13.2474 0
u = 0.051131 + 0.501827I
a = 1.30705 1.31645I
b = 0.963746 + 0.258016I
1.87492 + 0.52113I 7.46007 + 0.33584I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.051131 0.501827I
a = 1.30705 + 1.31645I
b = 0.963746 0.258016I
1.87492 0.52113I 7.46007 0.33584I
u = 1.51084 + 0.06009I
a = 0.09053 + 2.25061I
b = 0.52441 + 1.48832I
18.1852 + 6.5334I 0
u = 1.51084 0.06009I
a = 0.09053 2.25061I
b = 0.52441 1.48832I
18.1852 6.5334I 0
u = 0.346736 + 0.293540I
a = 1.47471 + 0.88660I
b = 0.407022 + 1.274040I
6.45539 3.75624I 8.92208 + 2.37124I
u = 0.346736 0.293540I
a = 1.47471 0.88660I
b = 0.407022 1.274040I
6.45539 + 3.75624I 8.92208 2.37124I
u = 0.109910 + 0.191162I
a = 2.62502 1.00223I
b = 0.221171 0.788369I
0.464107 1.212900I 5.34512 + 5.07325I
u = 0.109910 0.191162I
a = 2.62502 + 1.00223I
b = 0.221171 + 0.788369I
0.464107 + 1.212900I 5.34512 5.07325I
u = 0.164075
a = 6.48224
b = 0.479550
2.12876 0.110400
13
II. I
u
2
=
hb, u
7
+2u
6
2u
5
4u
4
+2u
3
+u
2
+au+3, u
8
+u
7
3u
6
2u
5
+3u
4
+2u1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
u
a
6
=
1
u
2
a
9
=
u
u
3
+ u
a
11
=
u
7
2u
6
+ 2u
5
+ 4u
4
2u
3
u
2
+ u 3
0
a
4
=
1
0
a
12
=
u
7
2u
6
+ 2u
5
+ 4u
4
2u
3
u
2
+ u 3
0
a
10
=
u
7
2u
6
+ 2u
5
+ 4u
4
2u
3
u
2
3
u
3
+ u
a
3
=
u
4
+ u
2
+ 1
u
6
+ 2u
4
u
2
a
7
=
u
u
a
2
=
u
7
2u
5
+ 2u
u
7
u
6
2u
5
+ 3u
4
2u
2
+ 2u 1
a
1
=
u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
7
10u
6
+ 7u
5
+ 25u
4
9u
3
12u
2
+ 8u 25
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
2
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
4
, c
11
u
8
c
5
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
6
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
7
, c
8
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
9
, c
10
(u 1)
8
c
12
(u + 1)
8
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
2
, c
6
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
4
, c
11
y
8
c
5
, c
7
, c
8
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
9
, c
10
, c
12
(y 1)
8
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.281371 1.128550I
b = 0
2.68559 1.13123I 9.56807 + 0.79885I
u = 1.180120 0.268597I
a = 0.281371 + 1.128550I
b = 0
2.68559 + 1.13123I 9.56807 0.79885I
u = 0.108090 + 0.747508I
a = 0.208670 + 0.825203I
b = 0
0.51448 2.57849I 6.42531 + 3.25625I
u = 0.108090 0.747508I
a = 0.208670 0.825203I
b = 0
0.51448 + 2.57849I 6.42531 3.25625I
u = 1.37100
a = 0.829189
b = 0
8.14766 20.0060
u = 1.334530 + 0.318930I
a = 0.284386 0.605794I
b = 0
4.02461 + 6.44354I 11.71592 3.92092I
u = 1.334530 0.318930I
a = 0.284386 + 0.605794I
b = 0
4.02461 6.44354I 11.71592 + 3.92092I
u = 0.463640
a = 2.74744
b = 0
2.48997 23.5750
17
III. I
u
3
= ha
4
a
3
+ a
2
+ b 2a + 1, a
5
a
4
+ a
3
2a
2
+ a 1, u 1i
(i) Arc colorings
a
5
=
1
0
a
8
=
0
1
a
6
=
1
1
a
9
=
1
0
a
11
=
a
a
4
+ a
3
a
2
+ 2a 1
a
4
=
0
a
4
a 1
a
12
=
a
a
3
+ 1
a
10
=
a
4
a 1
a
3
a
2
2
a
3
=
a
4
a 1
a
4
a 1
a
7
=
1
1
a
2
=
a
4
a 1
a
4
a 1
a
1
=
a
4
a 1
a
4
a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5a
4
+ 5a
3
+ 7a 14
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
5
c
3
u
5
+ 3u
4
+ 4u
3
+ u
2
u 1
c
4
u
5
+ u
4
+ 2u
3
+ u
2
+ u + 1
c
5
(u 1)
5
c
7
, c
8
(u + 1)
5
c
9
, c
10
u
5
+ u
4
2u
3
u
2
+ u 1
c
11
u
5
u
4
+ 2u
3
u
2
+ u 1
c
12
u
5
u
4
2u
3
+ u
2
+ u + 1
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
y
5
c
3
y
5
y
4
+ 8y
3
3y
2
+ 3y 1
c
4
, c
11
y
5
+ 3y
4
+ 4y
3
+ y
2
y 1
c
5
, c
7
, c
8
(y 1)
5
c
9
, c
10
, c
12
y
5
5y
4
+ 8y
3
3y
2
y 1
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.428550 + 1.039280I
b = 0.339110 + 0.822375I
1.97403 + 1.53058I 10.50099 3.45976I
u = 1.00000
a = 0.428550 1.039280I
b = 0.339110 0.822375I
1.97403 1.53058I 10.50099 + 3.45976I
u = 1.00000
a = 0.276511 + 0.728237I
b = 0.455697 + 1.200150I
7.51750 4.40083I 14.3774 + 5.8297I
u = 1.00000
a = 0.276511 0.728237I
b = 0.455697 1.200150I
7.51750 + 4.40083I 14.3774 5.8297I
u = 1.00000
a = 1.30408
b = 0.766826
4.04602 8.24330
21
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
5
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
88
+ 36u
87
+ ··· + 16896u + 1024)
c
2
u
5
(u
8
u
7
+ ··· + 2u 1)(u
88
2u
87
+ ··· + 64u 32)
c
3
(u
5
+ 3u
4
+ 4u
3
+ u
2
u 1)
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
88
3u
87
+ ··· + 49703u 30649)
c
4
u
8
(u
5
+ u
4
+ ··· + u + 1)(u
88
2u
87
+ ··· 1664u 256)
c
5
((u 1)
5
)(u
8
+ u
7
+ ··· + 2u 1)(u
88
7u
87
+ ··· + 5u + 1)
c
6
u
5
(u
8
+ u
7
+ ··· 2u 1)(u
88
2u
87
+ ··· + 64u 32)
c
7
, c
8
((u + 1)
5
)(u
8
u
7
+ ··· 2u 1)(u
88
7u
87
+ ··· + 5u + 1)
c
9
, c
10
((u 1)
8
)(u
5
+ u
4
+ ··· + u 1)(u
88
10u
87
+ ··· 13u + 1)
c
11
u
8
(u
5
u
4
+ ··· + u 1)(u
88
2u
87
+ ··· 1664u 256)
c
12
((u + 1)
8
)(u
5
u
4
+ ··· + u + 1)(u
88
10u
87
+ ··· 13u + 1)
22
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
5
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
88
+ 24y
87
+ ··· 10092544y + 1048576)
c
2
, c
6
y
5
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
88
36y
87
+ ··· 16896y + 1024)
c
3
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
88
37y
87
+ ··· 880685877y + 939361201)
c
4
, c
11
y
8
(y
5
+ 3y
4
+ ··· y 1)(y
88
+ 54y
87
+ ··· 49152y + 65536)
c
5
, c
7
, c
8
(y 1)
5
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
88
77y
87
+ ··· 7y + 1)
c
9
, c
10
, c
12
((y 1)
8
)(y
5
5y
4
+ ··· y 1)(y
88
86y
87
+ ··· 85y + 1)
23