12a
0595
(K12a
0595
)
A knot diagram
1
Linearized knot diagam
3 7 9 11 10 2 1 6 12 5 4 8
Solving Sequence
3,7
2 1 8 6 9 4 12 10 5 11
c
2
c
1
c
7
c
6
c
8
c
3
c
12
c
9
c
5
c
11
c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
69
+ u
68
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 69 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
69
+ u
68
+ · · · u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
8
=
u
5
2u
3
+ u
u
5
u
3
+ u
a
6
=
u
u
3
+ u
a
9
=
u
9
+ 2u
7
u
5
2u
3
+ u
u
11
3u
9
+ 4u
7
u
5
u
3
+ u
a
4
=
u
20
+ 5u
18
11u
16
+ 10u
14
+ 2u
12
13u
10
+ 9u
8
3u
4
+ u
2
+ 1
u
22
6u
20
+ 17u
18
26u
16
+ 20u
14
13u
10
+ 10u
8
u
6
2u
4
+ u
2
a
12
=
u
8
+ 3u
6
3u
4
+ 1
u
8
+ 2u
6
2u
4
a
10
=
u
27
+ 8u
25
+ ··· + 4u
5
u
3
u
27
+ 7u
25
+ ··· u
3
+ u
a
5
=
u
57
16u
55
+ ··· u
5
+ u
u
57
15u
55
+ ··· u
5
+ u
a
11
=
u
50
13u
48
+ ··· + u
2
+ 1
u
52
+ 14u
50
+ ··· 6u
8
u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
67
+ 72u
65
+ ··· 8u
3
+ 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
69
+ 37u
68
+ ··· u + 1
c
2
, c
6
u
69
u
68
+ ··· u + 1
c
3
u
69
u
68
+ ··· 4205u + 841
c
4
, c
5
, c
10
c
11
u
69
u
68
+ ··· u + 1
c
7
, c
12
u
69
3u
68
+ ··· + u + 1
c
8
u
69
9u
68
+ ··· 183u + 13
c
9
u
69
19u
68
+ ··· + 4845u 283
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
69
9y
68
+ ··· + 3y 1
c
2
, c
6
y
69
37y
68
+ ··· y 1
c
3
y
69
29y
68
+ ··· + 24176227y 707281
c
4
, c
5
, c
10
c
11
y
69
+ 79y
68
+ ··· y 1
c
7
, c
12
y
69
+ 55y
68
+ ··· 85y 1
c
8
y
69
5y
68
+ ··· + 1535y 169
c
9
y
69
13y
68
+ ··· + 1486623y 80089
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.007650 + 0.064350I
3.60184 + 2.81733I 9.32476 5.48757I
u = 1.007650 0.064350I
3.60184 2.81733I 9.32476 + 5.48757I
u = 0.863362 + 0.530746I
0.35930 6.77991I 0.61658 + 10.23881I
u = 0.863362 0.530746I
0.35930 + 6.77991I 0.61658 10.23881I
u = 0.835974 + 0.511530I
1.64738 + 3.32051I 3.54071 4.43827I
u = 0.835974 0.511530I
1.64738 3.32051I 3.54071 + 4.43827I
u = 0.879803 + 0.544272I
7.29269 + 9.02370I 3.47414 8.26985I
u = 0.879803 0.544272I
7.29269 9.02370I 3.47414 + 8.26985I
u = 0.859864 + 0.398364I
1.45583 1.56617I 5.75209 + 2.95981I
u = 0.859864 0.398364I
1.45583 + 1.56617I 5.75209 2.95981I
u = 1.050990 + 0.067740I
11.48740 4.67055I 10.85743 + 3.45107I
u = 1.050990 0.067740I
11.48740 + 4.67055I 10.85743 3.45107I
u = 0.763010 + 0.535883I
3.25699 2.16890I 0.53836 + 3.82901I
u = 0.763010 0.535883I
3.25699 + 2.16890I 0.53836 3.82901I
u = 0.931899
1.68818 4.45100
u = 0.983730 + 0.422361I
9.02531 + 0.64002I 6.52857 + 0.I
u = 0.983730 0.422361I
9.02531 0.64002I 6.52857 + 0.I
u = 0.689201 + 0.500960I
2.07105 + 0.85287I 5.34302 3.58736I
u = 0.689201 0.500960I
2.07105 0.85287I 5.34302 + 3.58736I
u = 0.614253 + 0.561310I
6.54819 4.59342I 1.49782 + 1.94707I
u = 0.614253 0.561310I
6.54819 + 4.59342I 1.49782 1.94707I
u = 0.637725 + 0.530123I
0.99322 + 2.46697I 1.50189 3.71848I
u = 0.637725 0.530123I
0.99322 2.46697I 1.50189 + 3.71848I
u = 1.107000 + 0.388573I
9.04626 + 0.50923I 0
u = 1.107000 0.388573I
9.04626 0.50923I 0
u = 0.137752 + 0.815117I
10.8743 9.4349I 5.12264 + 5.41104I
u = 0.137752 0.815117I
10.8743 + 9.4349I 5.12264 5.41104I
u = 0.135322 + 0.801855I
2.99570 + 7.10512I 2.78124 7.18886I
u = 0.135322 0.801855I
2.99570 7.10512I 2.78124 + 7.18886I
u = 0.073813 + 0.807863I
12.67980 + 0.44790I 7.20362 + 0.05375I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.073813 0.807863I
12.67980 0.44790I 7.20362 0.05375I
u = 0.127650 + 0.782006I
1.37080 3.50950I 0.93203 + 2.31314I
u = 0.127650 0.782006I
1.37080 + 3.50950I 0.93203 2.31314I
u = 0.087303 + 0.782586I
4.38416 + 0.86576I 5.85927 + 0.77218I
u = 0.087303 0.782586I
4.38416 0.86576I 5.85927 0.77218I
u = 1.127960 + 0.449076I
2.38041 2.24656I 0
u = 1.127960 0.449076I
2.38041 + 2.24656I 0
u = 1.142880 + 0.475125I
2.14308 + 5.59560I 0
u = 1.142880 0.475125I
2.14308 5.59560I 0
u = 1.153950 + 0.498640I
8.24718 7.43164I 0
u = 1.153950 0.498640I
8.24718 + 7.43164I 0
u = 1.199180 + 0.389997I
5.28056 0.45902I 0
u = 1.199180 0.389997I
5.28056 + 0.45902I 0
u = 1.209940 + 0.381438I
7.02202 3.10940I 0
u = 1.209940 0.381438I
7.02202 + 3.10940I 0
u = 0.183314 + 0.704841I
5.44368 + 2.87522I 1.31258 3.07627I
u = 0.183314 0.704841I
5.44368 2.87522I 1.31258 + 3.07627I
u = 1.205010 + 0.410064I
8.18209 + 3.26828I 0
u = 1.205010 0.410064I
8.18209 3.26828I 0
u = 1.218430 + 0.378071I
14.9696 + 5.4032I 0
u = 1.218430 0.378071I
14.9696 5.4032I 0
u = 1.218030 + 0.415989I
16.5257 4.7100I 0
u = 1.218030 0.415989I
16.5257 + 4.7100I 0
u = 1.194350 + 0.489511I
7.61719 5.52009I 0
u = 1.194350 0.489511I
7.61719 + 5.52009I 0
u = 1.188620 + 0.503633I
4.47624 + 8.24964I 0
u = 1.188620 0.503633I
4.47624 8.24964I 0
u = 1.193800 + 0.510098I
6.11348 11.92620I 0
u = 1.193800 0.510098I
6.11348 + 11.92620I 0
u = 1.206320 + 0.487082I
16.0195 + 4.2556I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.206320 0.487082I
16.0195 4.2556I 0
u = 1.198100 + 0.513816I
14.0097 + 14.3072I 0
u = 1.198100 0.513816I
14.0097 14.3072I 0
u = 0.386946 + 0.563275I
7.28945 + 3.35761I 1.95583 2.56316I
u = 0.386946 0.563275I
7.28945 3.35761I 1.95583 + 2.56316I
u = 0.163148 + 0.605619I
0.62850 1.34733I 3.35755 + 4.56273I
u = 0.163148 0.605619I
0.62850 + 1.34733I 3.35755 4.56273I
u = 0.305258 + 0.505306I
0.08963 1.59531I 1.18713 + 4.74981I
u = 0.305258 0.505306I
0.08963 + 1.59531I 1.18713 4.74981I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
69
+ 37u
68
+ ··· u + 1
c
2
, c
6
u
69
u
68
+ ··· u + 1
c
3
u
69
u
68
+ ··· 4205u + 841
c
4
, c
5
, c
10
c
11
u
69
u
68
+ ··· u + 1
c
7
, c
12
u
69
3u
68
+ ··· + u + 1
c
8
u
69
9u
68
+ ··· 183u + 13
c
9
u
69
19u
68
+ ··· + 4845u 283
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
69
9y
68
+ ··· + 3y 1
c
2
, c
6
y
69
37y
68
+ ··· y 1
c
3
y
69
29y
68
+ ··· + 24176227y 707281
c
4
, c
5
, c
10
c
11
y
69
+ 79y
68
+ ··· y 1
c
7
, c
12
y
69
+ 55y
68
+ ··· 85y 1
c
8
y
69
5y
68
+ ··· + 1535y 169
c
9
y
69
13y
68
+ ··· + 1486623y 80089
9