10
55
(K10a
9
)
A knot diagram
1
Linearized knot diagam
5 9 6 1 4 3 10 7 2 8
Solving Sequence
3,9
2
7,10
6 4 5 1 8
c
2
c
9
c
6
c
3
c
5
c
1
c
8
c
4
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.12530 × 10
24
u
32
+ 1.02963 × 10
25
u
31
+ ··· + 2.34036 × 10
25
b + 4.69152 × 10
25
,
1.57092 × 10
25
u
32
+ 3.30476 × 10
25
u
31
+ ··· + 9.36144 × 10
25
a + 1.45111 × 10
26
, u
33
u
32
+ ··· + 12u + 8i
I
v
1
= ha, v
2
+ b 2v 1, v
3
+ 2v
2
+ v + 1i
* 2 irreducible components of dim
C
= 0, with total 36 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−6.13×10
24
u
32
+1.03×10
25
u
31
+· · ·+2.34×10
25
b+4.69×10
25
, 1.57×
10
25
u
32
+3.30×10
25
u
31
+· · ·+9.36×10
25
a+1.45×10
26
, u
33
u
32
+· · ·+12u+8i
(i) Arc colorings
a
3
=
1
0
a
9
=
0
u
a
2
=
1
u
2
a
7
=
0.167808u
32
0.353018u
31
+ ··· 2.39523u 1.55009
0.261725u
32
0.439945u
31
+ ··· + 2.01891u 2.00462
a
10
=
u
u
3
+ u
a
6
=
0.429532u
32
0.792963u
31
+ ··· 0.376322u 3.55471
0.261725u
32
0.439945u
31
+ ··· + 2.01891u 2.00462
a
4
=
0.334706u
32
0.0742812u
31
+ ··· + 3.75000u + 2.50288
0.0757738u
32
0.0652588u
31
+ ··· 4.16452u 1.47047
a
5
=
0.0320196u
32
+ 0.277867u
31
+ ··· + 5.92497u + 1.20624
0.211499u
32
+ 0.571258u
31
+ ··· + 6.09759u + 3.97229
a
1
=
0.429532u
32
+ 0.792963u
31
+ ··· + 0.376322u + 3.55471
0.0675857u
32
+ 0.312561u
31
+ ··· + 2.94382u + 0.902830
a
8
=
0.309620u
32
0.669262u
31
+ ··· 2.20116u 2.87870
0.249910u
32
0.483907u
31
+ ··· + 0.866167u 2.07146
(ii) Obstruction class = 1
(iii) Cusp Shapes =
60635423650415331489185849
46807175136350804609973980
u
32
+
108124405345856702791639919
46807175136350804609973980
u
31
+
··· +
483007911642190145433442939
23403587568175402304986990
u +
98098888352311967905148621
11701793784087701152493495
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
u
33
+ 2u
32
+ ··· + 3u + 1
c
2
, c
9
u
33
u
32
+ ··· + 12u + 8
c
3
, c
5
, c
6
u
33
+ 8u
32
+ ··· + 11u + 1
c
7
, c
10
u
33
4u
32
+ ··· 16u
2
+ 1
c
8
u
33
+ 14u
32
+ ··· + 32u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
33
8y
32
+ ··· + 11y 1
c
2
, c
9
y
33
+ 21y
32
+ ··· 304y 64
c
3
, c
5
, c
6
y
33
+ 36y
32
+ ··· 29y 1
c
7
, c
10
y
33
14y
32
+ ··· + 32y 1
c
8
y
33
+ 14y
32
+ ··· + 340y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.287842 + 0.978115I
a = 0.995506 0.250345I
b = 0.990032 + 0.166252I
1.68836 2.02472I 12.19123 + 3.15987I
u = 0.287842 0.978115I
a = 0.995506 + 0.250345I
b = 0.990032 0.166252I
1.68836 + 2.02472I 12.19123 3.15987I
u = 0.258728 + 1.015690I
a = 0.614647 + 0.062246I
b = 0.555531 + 0.902494I
1.90081 + 2.94788I 6.37142 4.00779I
u = 0.258728 1.015690I
a = 0.614647 0.062246I
b = 0.555531 0.902494I
1.90081 2.94788I 6.37142 + 4.00779I
u = 0.044652 + 1.064410I
a = 0.01862 1.72371I
b = 0.12788 1.49913I
3.40289 3.09457I 6.42907 + 2.76186I
u = 0.044652 1.064410I
a = 0.01862 + 1.72371I
b = 0.12788 + 1.49913I
3.40289 + 3.09457I 6.42907 2.76186I
u = 0.818675 + 0.392192I
a = 0.407864 1.122020I
b = 0.568824 + 0.589839I
2.18443 + 2.93057I 13.2700 5.9877I
u = 0.818675 0.392192I
a = 0.407864 + 1.122020I
b = 0.568824 0.589839I
2.18443 2.93057I 13.2700 + 5.9877I
u = 1.163260 + 0.173959I
a = 0.077899 0.940641I
b = 0.05060 + 1.49956I
5.10374 + 0.60080I 6.85884 + 0.13509I
u = 1.163260 0.173959I
a = 0.077899 + 0.940641I
b = 0.05060 1.49956I
5.10374 0.60080I 6.85884 0.13509I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.004841 + 1.181600I
a = 0.834891 0.002237I
b = 0.261591 + 0.605055I
3.34637 + 1.37148I 3.58776 2.92200I
u = 0.004841 1.181600I
a = 0.834891 + 0.002237I
b = 0.261591 0.605055I
3.34637 1.37148I 3.58776 + 2.92200I
u = 1.169540 + 0.246902I
a = 0.090452 0.991567I
b = 0.17482 + 1.55316I
4.94269 + 5.66526I 7.31949 5.14166I
u = 1.169540 0.246902I
a = 0.090452 + 0.991567I
b = 0.17482 1.55316I
4.94269 5.66526I 7.31949 + 5.14166I
u = 0.360189 + 1.214590I
a = 1.071120 0.076444I
b = 0.414527 0.386927I
2.58252 + 3.89244I 4.89744 3.42674I
u = 0.360189 1.214590I
a = 1.071120 + 0.076444I
b = 0.414527 + 0.386927I
2.58252 3.89244I 4.89744 + 3.42674I
u = 0.513708 + 1.159100I
a = 1.164090 0.112067I
b = 0.819767 0.833430I
0.26767 7.94172I 10.29455 + 8.51301I
u = 0.513708 1.159100I
a = 1.164090 + 0.112067I
b = 0.819767 + 0.833430I
0.26767 + 7.94172I 10.29455 8.51301I
u = 0.354082 + 0.631353I
a = 0.44471 1.78764I
b = 0.534495 0.382584I
2.82990 0.89439I 12.3753 + 7.1209I
u = 0.354082 0.631353I
a = 0.44471 + 1.78764I
b = 0.534495 + 0.382584I
2.82990 + 0.89439I 12.3753 7.1209I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.659340 + 0.056414I
a = 0.636628 0.442458I
b = 0.073834 + 0.218596I
0.946260 0.088153I 9.34082 0.77609I
u = 0.659340 0.056414I
a = 0.636628 + 0.442458I
b = 0.073834 0.218596I
0.946260 + 0.088153I 9.34082 + 0.77609I
u = 0.000493 + 0.636688I
a = 0.198636 0.514130I
b = 0.289339 + 1.220180I
2.22875 + 2.67528I 2.73278 2.26366I
u = 0.000493 0.636688I
a = 0.198636 + 0.514130I
b = 0.289339 1.220180I
2.22875 2.67528I 2.73278 + 2.26366I
u = 0.40839 + 1.41713I
a = 0.780933 + 0.268916I
b = 0.19663 + 1.64569I
10.43260 + 6.00927I 4.11461 3.31809I
u = 0.40839 1.41713I
a = 0.780933 0.268916I
b = 0.19663 1.64569I
10.43260 6.00927I 4.11461 + 3.31809I
u = 0.34967 + 1.43738I
a = 0.805445 + 0.250021I
b = 0.04143 + 1.56263I
10.72190 + 0.46043I 3.63720 1.59605I
u = 0.34967 1.43738I
a = 0.805445 0.250021I
b = 0.04143 1.56263I
10.72190 0.46043I 3.63720 + 1.59605I
u = 0.64547 + 1.35144I
a = 1.222060 0.008698I
b = 0.27678 1.65105I
8.4689 12.1855I 6.56707 + 7.63472I
u = 0.64547 1.35144I
a = 1.222060 + 0.008698I
b = 0.27678 + 1.65105I
8.4689 + 12.1855I 6.56707 7.63472I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.60403 + 1.37429I
a = 1.203410 + 0.000498I
b = 0.11865 1.50838I
8.95423 + 5.75725I 5.65390 2.88970I
u = 0.60403 1.37429I
a = 1.203410 0.000498I
b = 0.11865 + 1.50838I
8.95423 5.75725I 5.65390 + 2.88970I
u = 0.470095
a = 0.116243
b = 0.355337
0.842528 11.7170
8
II. I
v
1
= ha, v
2
+ b 2v 1, v
3
+ 2v
2
+ v + 1i
(i) Arc colorings
a
3
=
1
0
a
9
=
v
0
a
2
=
1
0
a
7
=
0
v
2
+ 2v + 1
a
10
=
v
0
a
6
=
v
2
+ 2v + 1
v
2
+ 2v + 1
a
4
=
v
2
+ v
v
2
+ v 1
a
5
=
v
2
+ v
v 1
a
1
=
0
v
2
2v 1
a
8
=
v
v
2
+ 2v + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2v
2
+ 5v 11
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ u
2
1
c
2
, c
9
u
3
c
3
u
3
u
2
+ 2u 1
c
4
u
3
u
2
+ 1
c
5
, c
6
u
3
+ u
2
+ 2u + 1
c
7
(u 1)
3
c
8
, c
10
(u + 1)
3
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
y
3
y
2
+ 2y 1
c
2
, c
9
y
3
c
3
, c
5
, c
6
y
3
+ 3y
2
+ 2y 1
c
7
, c
8
, c
10
(y 1)
3
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.122561 + 0.744862I
a = 0
b = 0.215080 + 1.307140I
1.37919 2.82812I 12.69240 + 3.35914I
v = 0.122561 0.744862I
a = 0
b = 0.215080 1.307140I
1.37919 + 2.82812I 12.69240 3.35914I
v = 1.75488
a = 0
b = 0.569840
2.75839 13.6150
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
+ u
2
1)(u
33
+ 2u
32
+ ··· + 3u + 1)
c
2
, c
9
u
3
(u
33
u
32
+ ··· + 12u + 8)
c
3
(u
3
u
2
+ 2u 1)(u
33
+ 8u
32
+ ··· + 11u + 1)
c
4
(u
3
u
2
+ 1)(u
33
+ 2u
32
+ ··· + 3u + 1)
c
5
, c
6
(u
3
+ u
2
+ 2u + 1)(u
33
+ 8u
32
+ ··· + 11u + 1)
c
7
((u 1)
3
)(u
33
4u
32
+ ··· 16u
2
+ 1)
c
8
((u + 1)
3
)(u
33
+ 14u
32
+ ··· + 32u + 1)
c
10
((u + 1)
3
)(u
33
4u
32
+ ··· 16u
2
+ 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
4
(y
3
y
2
+ 2y 1)(y
33
8y
32
+ ··· + 11y 1)
c
2
, c
9
y
3
(y
33
+ 21y
32
+ ··· 304y 64)
c
3
, c
5
, c
6
(y
3
+ 3y
2
+ 2y 1)(y
33
+ 36y
32
+ ··· 29y 1)
c
7
, c
10
((y 1)
3
)(y
33
14y
32
+ ··· + 32y 1)
c
8
((y 1)
3
)(y
33
+ 14y
32
+ ··· + 340y 1)
14