12a
0601
(K12a
0601
)
A knot diagram
1
Linearized knot diagam
3 7 9 11 12 8 2 6 1 5 4 10
Solving Sequence
5,10
11 4 12 6 1 9 3 2 8 7
c
10
c
4
c
11
c
5
c
12
c
9
c
3
c
1
c
8
c
7
c
2
, c
6
Ideals for irreducible components
2
of X
par
I
u
1
= hu
63
+ u
62
+ ··· + 4u + 1i
* 1 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
63
+ u
62
+ · · · + 4u + 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
u
3
+ u
a
12
=
u
2
+ 1
u
4
+ 2u
2
a
6
=
u
5
2u
3
u
u
7
3u
5
2u
3
+ u
a
1
=
u
4
u
2
+ 1
u
4
+ 2u
2
a
9
=
u
8
+ 3u
6
+ u
4
2u
2
+ 1
u
8
4u
6
4u
4
a
3
=
u
19
+ 8u
17
+ 24u
15
+ 30u
13
+ 7u
11
10u
9
+ 4u
7
+ 6u
5
3u
3
+ 2u
u
19
9u
17
32u
15
55u
13
43u
11
9u
9
4u
5
+ u
3
+ u
a
2
=
u
34
15u
32
+ ··· + u
2
+ 1
u
34
+ 16u
32
+ ··· 2u
4
+ 3u
2
a
8
=
u
20
9u
18
+ ··· u
2
+ 1
u
22
10u
20
+ ··· + 2u
4
u
2
a
7
=
u
35
16u
33
+ ··· + 3u
3
2u
u
37
17u
35
+ ··· u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
62
4u
61
+ ··· 40u 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u
63
+ 15u
62
+ ··· + 16u
2
1
c
2
, c
7
u
63
+ u
62
+ ··· + 2u
3
+ 1
c
3
u
63
+ u
62
+ ··· + 11678u + 2941
c
4
, c
10
, c
11
u
63
+ u
62
+ ··· + 4u + 1
c
5
u
63
u
62
+ ··· + 394u + 65
c
9
, c
12
u
63
9u
62
+ ··· + 16u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
y
63
+ 67y
62
+ ··· + 32y 1
c
2
, c
7
y
63
+ 15y
62
+ ··· + 16y
2
1
c
3
y
63
+ 27y
62
+ ··· 133314016y 8649481
c
4
, c
10
, c
11
y
63
+ 59y
62
+ ··· 16y
2
1
c
5
y
63
+ 23y
62
+ ··· 226184y 4225
c
9
, c
12
y
63
+ 55y
62
+ ··· + 208y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.026966 + 1.106350I
5.72389 + 2.98502I 0
u = 0.026966 1.106350I
5.72389 2.98502I 0
u = 0.687201 + 0.412506I
9.24727 + 10.49800I 3.51356 8.27768I
u = 0.687201 0.412506I
9.24727 10.49800I 3.51356 + 8.27768I
u = 0.683558 + 0.418042I
9.63540 4.12275I 2.71858 + 3.42597I
u = 0.683558 0.418042I
9.63540 + 4.12275I 2.71858 3.42597I
u = 0.594200 + 0.519837I
10.03370 0.13330I 1.68361 + 2.69330I
u = 0.594200 0.519837I
10.03370 + 0.13330I 1.68361 2.69330I
u = 0.587406 + 0.526285I
9.69166 6.24596I 2.31699 + 2.22181I
u = 0.587406 0.526285I
9.69166 + 6.24596I 2.31699 2.22181I
u = 0.132381 + 1.218840I
0.146145 0.270553I 0
u = 0.132381 1.218840I
0.146145 + 0.270553I 0
u = 0.657132 + 0.390763I
1.28852 + 6.79003I 7.72888 9.43258I
u = 0.657132 0.390763I
1.28852 6.79003I 7.72888 + 9.43258I
u = 0.636380 + 0.414397I
3.22883 2.96613I 2.26029 + 3.71050I
u = 0.636380 0.414397I
3.22883 + 2.96613I 2.26029 3.71050I
u = 0.588036 + 0.455040I
3.42044 1.03125I 1.58884 + 3.34604I
u = 0.588036 0.455040I
3.42044 + 1.03125I 1.58884 3.34604I
u = 0.546794 + 0.481840I
1.71497 2.81621I 6.17352 + 3.05233I
u = 0.546794 0.481840I
1.71497 + 2.81621I 6.17352 3.05233I
u = 0.187128 + 1.267970I
0.75597 5.28066I 0
u = 0.187128 1.267970I
0.75597 + 5.28066I 0
u = 0.140950 + 1.288190I
3.01462 + 2.29987I 0
u = 0.140950 1.288190I
3.01462 2.29987I 0
u = 0.588233 + 0.366746I
0.67695 + 1.75613I 11.70628 3.56374I
u = 0.588233 0.366746I
0.67695 1.75613I 11.70628 + 3.56374I
u = 0.225134 + 1.306650I
7.62130 8.96120I 0
u = 0.225134 1.306650I
7.62130 + 8.96120I 0
u = 0.219260 + 1.317800I
7.95062 + 2.83007I 0
u = 0.219260 1.317800I
7.95062 2.83007I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.042411 + 1.342580I
4.52694 + 1.80324I 0
u = 0.042411 1.342580I
4.52694 1.80324I 0
u = 0.636351 + 0.129886I
3.15162 5.83269I 8.95633 + 6.72916I
u = 0.636351 0.129886I
3.15162 + 5.83269I 8.95633 6.72916I
u = 0.626388 + 0.148778I
3.37667 0.23757I 8.27194 1.71639I
u = 0.626388 0.148778I
3.37667 + 0.23757I 8.27194 + 1.71639I
u = 0.032534 + 0.631203I
5.53486 + 3.05897I 2.47533 2.85146I
u = 0.032534 0.631203I
5.53486 3.05897I 2.47533 + 2.85146I
u = 0.598759 + 0.047938I
3.27254 2.41607I 16.1850 + 5.7225I
u = 0.598759 0.047938I
3.27254 + 2.41607I 16.1850 5.7225I
u = 0.00543 + 1.42179I
11.72350 + 3.15804I 0
u = 0.00543 1.42179I
11.72350 3.15804I 0
u = 0.22566 + 1.44348I
5.15010 + 4.76868I 0
u = 0.22566 1.44348I
5.15010 4.76868I 0
u = 0.19753 + 1.46126I
7.93304 0.09783I 0
u = 0.19753 1.46126I
7.93304 + 0.09783I 0
u = 0.24532 + 1.45554I
7.23183 + 10.09140I 0
u = 0.24532 1.45554I
7.23183 10.09140I 0
u = 0.23532 + 1.46098I
9.26906 6.15955I 0
u = 0.23532 1.46098I
9.26906 + 6.15955I 0
u = 0.21343 + 1.46486I
9.59495 3.96752I 0
u = 0.21343 1.46486I
9.59495 + 3.96752I 0
u = 0.25415 + 1.46773I
15.3101 + 13.9353I 0
u = 0.25415 1.46773I
15.3101 13.9353I 0
u = 0.25182 + 1.46931I
15.7234 7.5385I 0
u = 0.25182 1.46931I
15.7234 + 7.5385I 0
u = 0.19538 + 1.48477I
16.1933 3.4257I 0
u = 0.19538 1.48477I
16.1933 + 3.4257I 0
u = 0.19915 + 1.48476I
16.5161 2.9974I 0
u = 0.19915 1.48476I
16.5161 + 2.9974I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.501335
0.970575 9.91400
u = 0.206160 + 0.325864I
0.414743 + 1.014940I 6.73202 6.39068I
u = 0.206160 0.325864I
0.414743 1.014940I 6.73202 + 6.39068I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u
63
+ 15u
62
+ ··· + 16u
2
1
c
2
, c
7
u
63
+ u
62
+ ··· + 2u
3
+ 1
c
3
u
63
+ u
62
+ ··· + 11678u + 2941
c
4
, c
10
, c
11
u
63
+ u
62
+ ··· + 4u + 1
c
5
u
63
u
62
+ ··· + 394u + 65
c
9
, c
12
u
63
9u
62
+ ··· + 16u + 1
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
y
63
+ 67y
62
+ ··· + 32y 1
c
2
, c
7
y
63
+ 15y
62
+ ··· + 16y
2
1
c
3
y
63
+ 27y
62
+ ··· 133314016y 8649481
c
4
, c
10
, c
11
y
63
+ 59y
62
+ ··· 16y
2
1
c
5
y
63
+ 23y
62
+ ··· 226184y 4225
c
9
, c
12
y
63
+ 55y
62
+ ··· + 208y 1
9