10
56
(K10a
28
)
A knot diagram
1
Linearized knot diagam
8 5 6 9 3 10 1 7 4 2
Solving Sequence
1,8 2,5
3 7 9 4 10 6
c
1
c
2
c
7
c
8
c
4
c
10
c
6
c
3
, c
5
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= h2u
34
+ 4u
33
+ ··· + b 2, 2u
34
+ 2u
33
+ ··· + a 2, u
35
+ 2u
34
+ ··· 2u 1i
I
u
2
= h−u
2
+ b, a u, u
3
u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 38 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2u
34
+4u
33
+· · ·+b2, 2u
34
+2u
33
+· · ·+a2, u
35
+2u
34
+· · ·2u1i
(i) Arc colorings
a
1
=
1
0
a
8
=
0
u
a
2
=
1
u
2
a
5
=
2u
34
2u
33
+ ··· + 6u + 2
2u
34
4u
33
+ ··· + 2u + 2
a
3
=
u
34
+ u
33
+ ··· 4u 1
u
34
+ 2u
33
+ ··· + 9u
2
1
a
7
=
u
u
a
9
=
u
3
u
3
+ u
a
4
=
u
32
5u
30
+ ··· + 4u + 1
u
33
+ 5u
31
+ ··· 4u
2
u
a
10
=
u
2
+ 1
u
4
a
6
=
u
7
+ 2u
5
2u
3
+ 2u
u
9
+ u
7
u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 7u
34
+ 10u
33
33u
32
62u
31
+ 104u
30
+ 233u
29
217u
28
640u
27
+ 303u
26
+ 1349u
25
205u
24
2310u
23
276u
22
+ 3206u
21
+ 1184u
20
3622u
19
2289u
18
+ 3265u
17
+ 3165u
16
2158u
15
3352u
14
+ 824u
13
+ 2806u
12
+ 244u
11
1824u
10
716u
9
+ 828u
8
+ 636u
7
230u
6
376u
5
32u
4
+ 126u
3
+ 61u
2
5u 13
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
35
+ 2u
34
+ ··· 2u 1
c
2
, c
3
, c
5
u
35
4u
34
+ ··· + 3u 1
c
4
, c
9
u
35
u
34
+ ··· 28u 8
c
6
u
35
2u
34
+ ··· + 36u 36
c
8
, c
10
u
35
+ 12u
34
+ ··· + 10u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
35
12y
34
+ ··· + 10y 1
c
2
, c
3
, c
5
y
35
34y
34
+ ··· + 19y 1
c
4
, c
9
y
35
+ 21y
34
+ ··· + 16y 64
c
6
y
35
12y
34
+ ··· + 22392y 1296
c
8
, c
10
y
35
+ 24y
34
+ ··· + 10y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.664256 + 0.761558I
a = 0.45768 1.47251I
b = 1.76114 0.11415I
1.24148 2.67684I 4.78426 + 2.93641I
u = 0.664256 0.761558I
a = 0.45768 + 1.47251I
b = 1.76114 + 0.11415I
1.24148 + 2.67684I 4.78426 2.93641I
u = 0.741471 + 0.622830I
a = 0.57819 + 1.67504I
b = 0.590055 + 1.240710I
0.35079 + 1.76625I 8.73044 2.55261I
u = 0.741471 0.622830I
a = 0.57819 1.67504I
b = 0.590055 1.240710I
0.35079 1.76625I 8.73044 + 2.55261I
u = 1.037620 + 0.057613I
a = 0.554534 0.308977I
b = 0.096321 0.988163I
4.46867 2.44036I 13.20394 + 3.90896I
u = 1.037620 0.057613I
a = 0.554534 + 0.308977I
b = 0.096321 + 0.988163I
4.46867 + 2.44036I 13.20394 3.90896I
u = 1.04680
a = 2.40428
b = 1.22975
6.56245 13.9210
u = 0.647381 + 0.692758I
a = 0.044489 + 0.551561I
b = 1.82365 + 0.07795I
1.45204 + 0.58793I 6.80279 + 0.37603I
u = 0.647381 0.692758I
a = 0.044489 0.551561I
b = 1.82365 0.07795I
1.45204 0.58793I 6.80279 0.37603I
u = 0.636751 + 0.841462I
a = 0.997900 + 0.837792I
b = 2.05544 1.02610I
4.54695 6.58963I 8.16646 + 3.21535I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.636751 0.841462I
a = 0.997900 0.837792I
b = 2.05544 + 1.02610I
4.54695 + 6.58963I 8.16646 3.21535I
u = 0.799224 + 0.732897I
a = 0.137052 0.887085I
b = 1.192050 0.720803I
3.23509 1.72545I 0.63608 + 2.52233I
u = 0.799224 0.732897I
a = 0.137052 + 0.887085I
b = 1.192050 + 0.720803I
3.23509 + 1.72545I 0.63608 2.52233I
u = 1.119540 + 0.118261I
a = 1.43525 + 0.93911I
b = 0.508472 + 1.022410I
11.18060 5.92010I 14.7078 + 4.1258I
u = 1.119540 0.118261I
a = 1.43525 0.93911I
b = 0.508472 1.022410I
11.18060 + 5.92010I 14.7078 4.1258I
u = 0.967598 + 0.636531I
a = 0.986041 0.154167I
b = 1.50085 + 0.53336I
1.09066 + 3.19486I 9.71319 2.77080I
u = 0.967598 0.636531I
a = 0.986041 + 0.154167I
b = 1.50085 0.53336I
1.09066 3.19486I 9.71319 + 2.77080I
u = 0.923611 + 0.710370I
a = 0.706663 + 0.972785I
b = 1.261460 0.179818I
2.85420 3.77887I 1.29814 + 3.89618I
u = 0.923611 0.710370I
a = 0.706663 0.972785I
b = 1.261460 + 0.179818I
2.85420 + 3.77887I 1.29814 3.89618I
u = 1.044390 + 0.520208I
a = 0.308880 1.070380I
b = 0.105718 0.418991I
8.72011 + 1.04091I 12.84142 2.04561I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.044390 0.520208I
a = 0.308880 + 1.070380I
b = 0.105718 + 0.418991I
8.72011 1.04091I 12.84142 + 2.04561I
u = 0.832533
a = 0.863173
b = 0.390504
1.36456 6.49720
u = 0.999651 + 0.662016I
a = 0.70686 2.15648I
b = 1.84700 0.41941I
2.49390 5.84473I 8.96835 + 4.95079I
u = 0.999651 0.662016I
a = 0.70686 + 2.15648I
b = 1.84700 + 0.41941I
2.49390 + 5.84473I 8.96835 4.95079I
u = 0.886910 + 0.817524I
a = 1.29729 + 0.86025I
b = 0.19926 + 2.00598I
0.09589 3.04539I 10.49856 + 3.07346I
u = 0.886910 0.817524I
a = 1.29729 0.86025I
b = 0.19926 2.00598I
0.09589 + 3.04539I 10.49856 3.07346I
u = 0.280203 + 0.733036I
a = 0.964828 0.842495I
b = 0.673575 0.185802I
6.48734 + 3.48149I 9.01514 3.12997I
u = 0.280203 0.733036I
a = 0.964828 + 0.842495I
b = 0.673575 + 0.185802I
6.48734 3.48149I 9.01514 + 3.12997I
u = 1.007860 + 0.690657I
a = 0.76872 + 1.59182I
b = 2.25197 + 0.62559I
0.21056 + 8.20034I 6.93623 7.67757I
u = 1.007860 0.690657I
a = 0.76872 1.59182I
b = 2.25197 0.62559I
0.21056 8.20034I 6.93623 + 7.67757I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.045240 + 0.713362I
a = 0.03530 2.41846I
b = 2.14450 1.67720I
5.78918 + 12.39880I 9.85333 7.70880I
u = 1.045240 0.713362I
a = 0.03530 + 2.41846I
b = 2.14450 + 1.67720I
5.78918 12.39880I 9.85333 + 7.70880I
u = 0.282825 + 0.410007I
a = 0.74438 + 1.30353I
b = 0.006557 + 0.477496I
0.429568 + 1.170440I 5.16678 5.64189I
u = 0.282825 0.410007I
a = 0.74438 1.30353I
b = 0.006557 0.477496I
0.429568 1.170440I 5.16678 + 5.64189I
u = 0.392648
a = 1.74649
b = 0.848760
2.15415 1.93570
8
II. I
u
2
= h−u
2
+ b, a u, u
3
u
2
+ 1i
(i) Arc colorings
a
1
=
1
0
a
8
=
0
u
a
2
=
1
u
2
a
5
=
u
u
2
a
3
=
u + 1
2u
2
a
7
=
u
u
a
9
=
u
2
+ 1
u
2
+ u + 1
a
4
=
u
u
2
a
10
=
u
2
+ 1
u
2
+ u + 1
a
6
=
1
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
2
+ 7u 10
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
u
2
+ 1
c
2
, c
3
(u 1)
3
c
4
, c
9
u
3
c
5
(u + 1)
3
c
6
, c
10
u
3
u
2
+ 2u 1
c
7
u
3
+ u
2
1
c
8
u
3
+ u
2
+ 2u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
3
y
2
+ 2y 1
c
2
, c
3
, c
5
(y 1)
3
c
4
, c
9
y
3
c
6
, c
8
, c
10
y
3
+ 3y
2
+ 2y 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.877439 + 0.744862I
b = 0.215080 + 1.307140I
1.37919 2.82812I 4.28809 + 2.59975I
u = 0.877439 0.744862I
a = 0.877439 0.744862I
b = 0.215080 1.307140I
1.37919 + 2.82812I 4.28809 2.59975I
u = 0.754878
a = 0.754878
b = 0.569840
2.75839 16.4240
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
3
u
2
+ 1)(u
35
+ 2u
34
+ ··· 2u 1)
c
2
, c
3
((u 1)
3
)(u
35
4u
34
+ ··· + 3u 1)
c
4
, c
9
u
3
(u
35
u
34
+ ··· 28u 8)
c
5
((u + 1)
3
)(u
35
4u
34
+ ··· + 3u 1)
c
6
(u
3
u
2
+ 2u 1)(u
35
2u
34
+ ··· + 36u 36)
c
7
(u
3
+ u
2
1)(u
35
+ 2u
34
+ ··· 2u 1)
c
8
(u
3
+ u
2
+ 2u + 1)(u
35
+ 12u
34
+ ··· + 10u + 1)
c
10
(u
3
u
2
+ 2u 1)(u
35
+ 12u
34
+ ··· + 10u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
(y
3
y
2
+ 2y 1)(y
35
12y
34
+ ··· + 10y 1)
c
2
, c
3
, c
5
((y 1)
3
)(y
35
34y
34
+ ··· + 19y 1)
c
4
, c
9
y
3
(y
35
+ 21y
34
+ ··· + 16y 64)
c
6
(y
3
+ 3y
2
+ 2y 1)(y
35
12y
34
+ ··· + 22392y 1296)
c
8
, c
10
(y
3
+ 3y
2
+ 2y 1)(y
35
+ 24y
34
+ ··· + 10y 1)
14