10
58
(K10a
20
)
A knot diagram
1
Linearized knot diagam
8 5 7 3 10 4 9 1 6 2
Solving Sequence
3,7
4 5 2
6,10
9 8 1
c
3
c
4
c
2
c
6
c
9
c
7
c
1
c
5
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
7
+ u
5
+ 2u
3
+ b + u, u
6
u
4
2u
2
+ a 1, u
10
u
9
+ 2u
8
u
7
+ 4u
6
2u
5
+ 4u
4
u
3
+ 3u
2
+ u + 1i
I
u
2
= hu
25
+ 2u
24
+ ··· + b + 3, 3u
25
7u
24
+ ··· + a 6, u
26
2u
25
+ ··· u + 1i
I
u
3
= hb + u + 1, a u, u
2
+ u + 1i
I
u
4
= hb u, a 1, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 40 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
7
+ u
5
+ 2u
3
+ b + u, u
6
u
4
2u
2
+ a 1, u
10
u
9
+ · · · + u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
5
=
u
2
+ 1
u
2
a
2
=
u
4
+ u
2
+ 1
u
4
a
6
=
u
u
3
+ u
a
10
=
u
6
+ u
4
+ 2u
2
+ 1
u
7
u
5
2u
3
u
a
9
=
u
u
8
u
7
+ 2u
6
u
5
+ 3u
4
u
3
+ 3u
2
+ 1
a
8
=
u
3
u
6
+ u
5
u
4
+ u
3
2u
2
1
a
1
=
u
2
+ 1
u
7
+ u
6
u
5
2u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
9
6u
8
+ 6u
7
4u
6
+ 14u
5
14u
4
+ 10u
3
6u
2
+ 10u
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
10
+ u
9
+ 2u
8
+ u
7
+ 4u
6
+ 2u
5
+ 4u
4
+ u
3
+ 3u
2
u + 1
c
2
, c
4
, c
7
c
10
u
10
+ 3u
9
+ ··· + 5u + 1
c
5
, c
9
u
10
5u
9
+ ··· 8u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
10
+ 3y
9
+ ··· + 5y + 1
c
2
, c
4
, c
7
c
10
y
10
+ 11y
9
+ ··· + 13y + 1
c
5
, c
9
y
10
+ 5y
9
+ ··· + 32y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.100577 + 0.954526I
a = 0.658857 0.498555I
b = 0.542150 + 0.578753I
3.48123 2.16643I 9.00466 + 4.21901I
u = 0.100577 0.954526I
a = 0.658857 + 0.498555I
b = 0.542150 0.578753I
3.48123 + 2.16643I 9.00466 4.21901I
u = 0.900362 + 0.768734I
a = 1.68093 + 0.92466I
b = 2.22427 + 0.45966I
10.21950 0.19532I 4.14143 1.59060I
u = 0.900362 0.768734I
a = 1.68093 0.92466I
b = 2.22427 0.45966I
10.21950 + 0.19532I 4.14143 + 1.59060I
u = 0.774061 + 0.907730I
a = 0.053403 + 0.383357I
b = 0.306648 + 0.345217I
4.50100 5.87397I 1.27770 + 5.35715I
u = 0.774061 0.907730I
a = 0.053403 0.383357I
b = 0.306648 0.345217I
4.50100 + 5.87397I 1.27770 5.35715I
u = 0.782324 + 1.035710I
a = 1.19625 1.47594I
b = 2.46450 0.08430I
8.4959 + 12.7213I 1.50029 7.98966I
u = 0.782324 1.035710I
a = 1.19625 + 1.47594I
b = 2.46450 + 0.08430I
8.4959 12.7213I 1.50029 + 7.98966I
u = 0.308049 + 0.477623I
a = 0.696944 0.500305I
b = 0.024265 0.486995I
0.004061 1.246020I 0.08524 + 5.02615I
u = 0.308049 0.477623I
a = 0.696944 + 0.500305I
b = 0.024265 + 0.486995I
0.004061 + 1.246020I 0.08524 5.02615I
5
II.
I
u
2
= hu
25
+2u
24
+· · ·+b +3, 3u
25
7u
24
+· · ·+a 6, u
26
2u
25
+· · ·u +1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
5
=
u
2
+ 1
u
2
a
2
=
u
4
+ u
2
+ 1
u
4
a
6
=
u
u
3
+ u
a
10
=
3u
25
+ 7u
24
+ ··· 4u + 6
u
25
2u
24
+ ··· 3u 3
a
9
=
u
25
+ 3u
24
+ ··· 2u + 4
u
22
3u
20
+ ··· 3u 1
a
8
=
u
25
+ u
24
+ ··· 3u 1
u
25
2u
24
+ ··· + 3u 1
a
1
=
u
25
+ 3u
24
+ ··· u + 5
u
25
4u
23
+ ··· 3u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 5u
25
12u
24
+ 25u
23
43u
22
+ 75u
21
109u
20
+ 126u
19
175u
18
+ 168u
17
200u
16
+ 98u
15
164u
14
6u
13
49u
12
144u
11
10u
10
179u
9
+
26u
8
112u
7
28u
6
47u
5
26u
4
+ 9u
3
16u
2
+ 15u 5
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
26
+ 2u
25
+ ··· + u + 1
c
2
, c
4
, c
7
c
10
u
26
+ 8u
25
+ ··· + 13u + 1
c
5
, c
9
(u
13
+ 2u
12
+ ··· + 3u + 2)
2
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
26
+ 8y
25
+ ··· + 13y + 1
c
2
, c
4
, c
7
c
10
y
26
+ 20y
25
+ ··· 11y + 1
c
5
, c
9
(y
13
+ 10y
12
+ ··· 7y 4)
2
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.752045 + 0.803934I
a = 1.97258 1.23710I
b = 2.47801 0.65547I
1.88524 0.96841I 0.413632 + 1.140295I
u = 0.752045 0.803934I
a = 1.97258 + 1.23710I
b = 2.47801 + 0.65547I
1.88524 + 0.96841I 0.413632 1.140295I
u = 0.578645 + 0.950081I
a = 0.030039 + 0.285319I
b = 0.288458 + 0.136559I
0.80957 3.02973I 5.16840 + 1.62282I
u = 0.578645 0.950081I
a = 0.030039 0.285319I
b = 0.288458 0.136559I
0.80957 + 3.02973I 5.16840 1.62282I
u = 0.496478 + 0.720203I
a = 0.299461 0.224790I
b = 0.013218 0.327276I
0.00150 1.41503I 1.90513 + 4.60201I
u = 0.496478 0.720203I
a = 0.299461 + 0.224790I
b = 0.013218 + 0.327276I
0.00150 + 1.41503I 1.90513 4.60201I
u = 0.335785 + 1.109920I
a = 0.267955 + 0.444237I
b = 0.583042 0.148240I
1.88524 0.96841I 0.413632 + 1.140295I
u = 0.335785 1.109920I
a = 0.267955 0.444237I
b = 0.583042 + 0.148240I
1.88524 + 0.96841I 0.413632 1.140295I
u = 0.905446 + 0.730041I
a = 1.71372 0.85399I
b = 2.17513 0.47784I
9.45063 6.48172I 3.04187 + 3.27257I
u = 0.905446 0.730041I
a = 1.71372 + 0.85399I
b = 2.17513 + 0.47784I
9.45063 + 6.48172I 3.04187 3.27257I
9
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.269616 + 1.131670I
a = 0.308288 0.503667I
b = 0.653102 + 0.213082I
1.46125 6.61332I 1.15142 + 6.72912I
u = 0.269616 1.131670I
a = 0.308288 + 0.503667I
b = 0.653102 0.213082I
1.46125 + 6.61332I 1.15142 6.72912I
u = 0.786233 + 0.860060I
a = 0.072545 0.387289I
b = 0.276054 0.366893I
4.64840 1.75564 + 0.I
u = 0.786233 0.860060I
a = 0.072545 + 0.387289I
b = 0.276054 + 0.366893I
4.64840 1.75564 + 0.I
u = 0.819468 + 0.042718I
a = 0.021039 0.644673I
b = 0.010298 0.529188I
5.42596 2.97283I 4.39163 + 2.88376I
u = 0.819468 0.042718I
a = 0.021039 + 0.644673I
b = 0.010298 + 0.529188I
5.42596 + 2.97283I 4.39163 2.88376I
u = 0.791857 + 0.886903I
a = 1.65384 + 1.34745I
b = 2.50466 + 0.39980I
5.42596 + 2.97283I 4.39163 2.88376I
u = 0.791857 0.886903I
a = 1.65384 1.34745I
b = 2.50466 0.39980I
5.42596 2.97283I 4.39163 + 2.88376I
u = 0.732196 + 0.941652I
a = 1.54369 1.64448I
b = 2.67881 0.24953I
1.46125 + 6.61332I 1.15142 6.72912I
u = 0.732196 0.941652I
a = 1.54369 + 1.64448I
b = 2.67881 + 0.24953I
1.46125 6.61332I 1.15142 + 6.72912I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.156803 + 0.747604I
a = 1.50536 0.52470I
b = 0.156223 + 1.207680I
0.80957 + 3.02973I 5.16840 1.62282I
u = 0.156803 0.747604I
a = 1.50536 + 0.52470I
b = 0.156223 1.207680I
0.80957 3.02973I 5.16840 + 1.62282I
u = 0.799863 + 1.014160I
a = 1.26195 + 1.42943I
b = 2.45906 + 0.13647I
9.45063 + 6.48172I 3.04187 3.27257I
u = 0.799863 1.014160I
a = 1.26195 1.42943I
b = 2.45906 0.13647I
9.45063 6.48172I 3.04187 + 3.27257I
u = 0.148015 + 0.419312I
a = 1.80840 0.30217I
b = 0.394374 0.713561I
0.00150 1.41503I 1.90513 + 4.60201I
u = 0.148015 0.419312I
a = 1.80840 + 0.30217I
b = 0.394374 + 0.713561I
0.00150 + 1.41503I 1.90513 4.60201I
11
III. I
u
3
= hb + u + 1, a u, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u + 1
a
5
=
u
u + 1
a
2
=
0
u
a
6
=
u
u + 1
a
10
=
u
u 1
a
9
=
u
u 1
a
8
=
1
0
a
1
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u + 4
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
10
u
2
u + 1
c
3
, c
4
, c
8
u
2
+ u + 1
c
5
, c
9
u
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
10
y
2
+ y + 1
c
5
, c
9
y
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.500000 + 0.866025I
b = 0.500000 0.866025I
4.05977I 0. + 6.92820I
u = 0.500000 0.866025I
a = 0.500000 0.866025I
b = 0.500000 + 0.866025I
4.05977I 0. 6.92820I
15
IV. I
u
4
= hb u, a 1, u
2
+ u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u + 1
a
5
=
u
u + 1
a
2
=
0
u
a
6
=
u
u + 1
a
10
=
1
u
a
9
=
1
u
a
8
=
u
2u + 1
a
1
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
10
u
2
u + 1
c
3
, c
4
, c
8
u
2
+ u + 1
c
5
, c
9
u
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
10
y
2
+ y + 1
c
5
, c
9
y
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 1.00000
b = 0.500000 + 0.866025I
0 3.00000
u = 0.500000 0.866025I
a = 1.00000
b = 0.500000 0.866025I
0 3.00000
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
((u
2
u + 1)
2
)(u
10
+ u
9
+ ··· u + 1)
· (u
26
+ 2u
25
+ ··· + u + 1)
c
2
, c
7
, c
10
((u
2
u + 1)
2
)(u
10
+ 3u
9
+ ··· + 5u + 1)(u
26
+ 8u
25
+ ··· + 13u + 1)
c
3
, c
8
((u
2
+ u + 1)
2
)(u
10
+ u
9
+ ··· u + 1)
· (u
26
+ 2u
25
+ ··· + u + 1)
c
4
((u
2
+ u + 1)
2
)(u
10
+ 3u
9
+ ··· + 5u + 1)(u
26
+ 8u
25
+ ··· + 13u + 1)
c
5
, c
9
u
4
(u
10
5u
9
+ ··· 8u + 4)(u
13
+ 2u
12
+ ··· + 3u + 2)
2
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
((y
2
+ y + 1)
2
)(y
10
+ 3y
9
+ ··· + 5y + 1)(y
26
+ 8y
25
+ ··· + 13y + 1)
c
2
, c
4
, c
7
c
10
((y
2
+ y + 1)
2
)(y
10
+ 11y
9
+ ··· + 13y + 1)(y
26
+ 20y
25
+ ··· 11y + 1)
c
5
, c
9
y
4
(y
10
+ 5y
9
+ ··· + 32y + 16)(y
13
+ 10y
12
+ ··· 7y 4)
2
21