12a
0636
(K12a
0636
)
A knot diagram
1
Linearized knot diagam
3 7 10 9 11 2 1 12 4 6 5 8
Solving Sequence
2,6
7 3 1
8,11
5 12 10 4 9
c
6
c
2
c
1
c
7
c
5
c
11
c
10
c
3
c
9
c
4
, c
8
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
25
2u
24
+ ··· + b 1, 7u
25
+ 15u
24
+ ··· + 2a + 11, u
26
+ 3u
25
+ ··· + 11u + 2i
I
u
2
= h−u
13
a 8u
14
+ ··· a 10, 2u
13
a + 3u
14
+ ··· + a 2,
u
15
u
14
4u
13
+ 5u
12
+ 6u
11
10u
10
+ 7u
8
8u
7
+ 4u
6
+ 6u
5
8u
4
+ 2u
3
+ 2u
2
2u + 1i
I
u
3
= h−u
9
+ 2u
7
u
5
2u
3
+ b + u, u
8
u
7
+ 3u
6
+ 2u
5
3u
4
u
3
u
2
+ a u + 2,
u
10
3u
8
+ 4u
6
u
4
u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 66 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
25
2u
24
+· · ·+b1, 7u
25
+15u
24
+· · ·+2a+11, u
26
+3u
25
+· · ·+11u+2i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
u
3
+ u
a
8
=
u
6
u
4
+ 1
u
8
2u
6
+ 2u
4
a
11
=
7
2
u
25
15
2
u
24
+ ··· 31u
11
2
u
25
+ 2u
24
+ ··· + 8u + 1
a
5
=
1
2
u
25
3
2
u
24
+ ··· 6u
1
2
u
24
u
23
+ ··· 5u 1
a
12
=
u
9
2u
7
+ u
5
+ 2u
3
u
u
11
3u
9
+ 4u
7
u
5
u
3
+ u
a
10
=
9
2
u
25
19
2
u
24
+ ··· 39u
13
2
u
25
+ 2u
24
+ ··· + 8u + 1
a
4
=
1
2
u
25
1
2
u
24
+ ··· 2u
1
2
u
24
u
23
+ ··· 4u 1
a
9
=
u
12
3u
10
+ 3u
8
+ 2u
6
4u
4
+ u
2
+ 1
u
14
4u
12
+ 7u
10
4u
8
2u
6
+ 4u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
25
4u
24
+ 12u
23
+ 34u
22
22u
21
122u
20
30u
19
+
220u
18
+ 202u
17
140u
16
356u
15
190u
14
+ 202u
13
+ 434u
12
+ 198u
11
234u
10
362u
9
134u
8
+ 126u
7
+ 202u
6
+ 86u
5
38u
4
78u
3
32u
2
+ 4u + 18
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
26
+ 15u
25
+ ··· + 17u + 4
c
2
, c
6
u
26
3u
25
+ ··· 11u + 2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
26
+ 18u
24
+ ··· u + 1
c
7
, c
8
, c
12
u
26
9u
25
+ ··· 215u + 26
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
26
7y
25
+ ··· + 207y + 16
c
2
, c
6
y
26
15y
25
+ ··· 17y + 4
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
26
+ 36y
25
+ ··· + 5y + 1
c
7
, c
8
, c
12
y
26
+ 29y
25
+ ··· 257y + 676
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.956817 + 0.396091I
a = 0.651697 + 0.991591I
b = 0.487266 + 0.268935I
0.58961 + 3.47100I 5.92481 9.23773I
u = 0.956817 0.396091I
a = 0.651697 0.991591I
b = 0.487266 0.268935I
0.58961 3.47100I 5.92481 + 9.23773I
u = 0.751125 + 0.602479I
a = 1.187320 0.581977I
b = 0.03078 + 1.53000I
8.48939 + 2.35165I 0.61282 3.28103I
u = 0.751125 0.602479I
a = 1.187320 + 0.581977I
b = 0.03078 1.53000I
8.48939 2.35165I 0.61282 + 3.28103I
u = 0.904845 + 0.273734I
a = 0.298839 + 0.531776I
b = 0.141020 + 0.376831I
1.42636 1.11233I 0.498012 + 0.385891I
u = 0.904845 0.273734I
a = 0.298839 0.531776I
b = 0.141020 0.376831I
1.42636 + 1.11233I 0.498012 0.385891I
u = 0.069667 + 0.918847I
a = 0.772660 + 0.797604I
b = 0.33361 + 1.64747I
18.8709 8.2243I 1.19263 + 3.34279I
u = 0.069667 0.918847I
a = 0.772660 0.797604I
b = 0.33361 1.64747I
18.8709 + 8.2243I 1.19263 3.34279I
u = 0.006971 + 0.822667I
a = 0.236714 0.504478I
b = 0.401873 0.547293I
4.02599 1.44616I 4.11158 + 4.76185I
u = 0.006971 0.822667I
a = 0.236714 + 0.504478I
b = 0.401873 + 0.547293I
4.02599 + 1.44616I 4.11158 4.76185I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.341936 + 0.725717I
a = 0.612752 + 0.286096I
b = 0.14424 1.56542I
10.39290 4.06497I 0.32404 + 2.28928I
u = 0.341936 0.725717I
a = 0.612752 0.286096I
b = 0.14424 + 1.56542I
10.39290 + 4.06497I 0.32404 2.28928I
u = 1.068130 + 0.547532I
a = 2.11393 1.03569I
b = 0.20016 1.55835I
12.4889 + 8.8626I 2.32670 6.75099I
u = 1.068130 0.547532I
a = 2.11393 + 1.03569I
b = 0.20016 + 1.55835I
12.4889 8.8626I 2.32670 + 6.75099I
u = 1.201580 + 0.188741I
a = 0.30204 2.23637I
b = 0.11408 1.65028I
15.2170 + 1.3980I 5.67569 0.13534I
u = 1.201580 0.188741I
a = 0.30204 + 2.23637I
b = 0.11408 + 1.65028I
15.2170 1.3980I 5.67569 + 0.13534I
u = 1.223020 + 0.456500I
a = 0.578173 0.689340I
b = 0.367731 0.587274I
7.67362 3.10658I 0.75309 1.41288I
u = 1.223020 0.456500I
a = 0.578173 + 0.689340I
b = 0.367731 + 0.587274I
7.67362 + 3.10658I 0.75309 + 1.41288I
u = 1.225690 + 0.460987I
a = 0.339499 1.317720I
b = 0.447158 0.574007I
7.64611 + 6.04329I 0.84178 7.93478I
u = 1.225690 0.460987I
a = 0.339499 + 1.317720I
b = 0.447158 + 0.574007I
7.64611 6.04329I 0.84178 + 7.93478I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.288060 + 0.430073I
a = 0.67479 + 2.08726I
b = 0.32678 + 1.67472I
16.3921 + 3.4886I 4.76966 0.45734I
u = 1.288060 0.430073I
a = 0.67479 2.08726I
b = 0.32678 1.67472I
16.3921 3.4886I 4.76966 + 0.45734I
u = 1.258780 + 0.509888I
a = 1.71248 + 2.27956I
b = 0.35659 + 1.64288I
16.9890 + 13.3492I 4.07199 6.35165I
u = 1.258780 0.509888I
a = 1.71248 2.27956I
b = 0.35659 1.64288I
16.9890 13.3492I 4.07199 + 6.35165I
u = 0.438383 + 0.308301I
a = 0.831459 0.008336I
b = 0.425812 + 0.076831I
0.801816 0.109645I 12.97054 + 1.47787I
u = 0.438383 0.308301I
a = 0.831459 + 0.008336I
b = 0.425812 0.076831I
0.801816 + 0.109645I 12.97054 1.47787I
7
II. I
u
2
=
h−u
13
a8u
14
+· · ·a10, 2u
13
a+3u
14
+· · ·+a2, u
15
u
14
+· · ·2u+1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
u
3
+ u
a
8
=
u
6
u
4
+ 1
u
8
2u
6
+ 2u
4
a
11
=
a
0.727273u
14
+ 0.0909091au
13
+ ··· + 0.0909091a + 0.909091
a
5
=
0.272727au
14
0.363636u
14
+ ··· 0.909091a + 0.727273
0.363636au
14
0.181818au
13
+ ··· 0.181818a 0.909091
a
12
=
u
9
2u
7
+ u
5
+ 2u
3
u
u
11
3u
9
+ 4u
7
u
5
u
3
+ u
a
10
=
0.727273u
14
0.0909091au
13
+ ··· + 0.909091a 0.909091
0.727273u
14
+ 0.0909091au
13
+ ··· + 0.0909091a + 0.909091
a
4
=
0.727273au
14
+ 0.363636u
14
+ ··· + 0.909091a 0.727273
1
a
9
=
u
12
3u
10
+ 3u
8
+ 2u
6
4u
4
+ u
2
+ 1
u
14
4u
12
+ 7u
10
4u
8
2u
6
+ 4u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
13
16u
11
+ 4u
10
+ 28u
9
12u
8
12u
7
+ 16u
6
16u
5
+ 24u
3
8u
2
+ 6
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
15
+ 9u
14
+ ··· 4u
2
+ 1)
2
c
2
, c
6
(u
15
+ u
14
+ ··· 2u 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
30
+ u
29
+ ··· + 54u + 17
c
7
, c
8
, c
12
(u
15
+ 3u
14
+ ··· + 8u
2
1)
2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
15
5y
14
+ ··· + 8y 1)
2
c
2
, c
6
(y
15
9y
14
+ ··· + 4y
2
1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
30
+ 27y
29
+ ··· + 4428y + 289
c
7
, c
8
, c
12
(y
15
+ 19y
14
+ ··· + 16y 1)
2
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.023100 + 0.900040I
a = 0.360717 + 1.290430I
b = 0.10773 + 1.57610I
11.31470 + 3.25615I 0.32867 2.40088I
u = 0.023100 + 0.900040I
a = 0.518581 0.298234I
b = 0.988185 0.651753I
11.31470 + 3.25615I 0.32867 2.40088I
u = 0.023100 0.900040I
a = 0.360717 1.290430I
b = 0.10773 1.57610I
11.31470 3.25615I 0.32867 + 2.40088I
u = 0.023100 0.900040I
a = 0.518581 + 0.298234I
b = 0.988185 + 0.651753I
11.31470 3.25615I 0.32867 + 2.40088I
u = 0.863978
a = 1.75727 + 1.74904I
b = 0.234017 + 1.079020I
4.54552 4.48380
u = 0.863978
a = 1.75727 1.74904I
b = 0.234017 1.079020I
4.54552 4.48380
u = 1.093890 + 0.311098I
a = 0.115665 + 0.228205I
b = 0.603738 + 0.781085I
6.68965 + 1.10849I 3.51398 0.68443I
u = 1.093890 + 0.311098I
a = 0.99897 2.63611I
b = 0.061421 1.364080I
6.68965 + 1.10849I 3.51398 0.68443I
u = 1.093890 0.311098I
a = 0.115665 0.228205I
b = 0.603738 0.781085I
6.68965 1.10849I 3.51398 + 0.68443I
u = 1.093890 0.311098I
a = 0.99897 + 2.63611I
b = 0.061421 + 1.364080I
6.68965 1.10849I 3.51398 + 0.68443I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.747479 + 0.391613I
a = 1.293270 0.129521I
b = 0.046233 + 1.126590I
2.04760 1.75942I 6.85085 + 5.01461I
u = 0.747479 + 0.391613I
a = 0.75255 + 1.32580I
b = 0.169565 0.296554I
2.04760 1.75942I 6.85085 + 5.01461I
u = 0.747479 0.391613I
a = 1.293270 + 0.129521I
b = 0.046233 1.126590I
2.04760 + 1.75942I 6.85085 5.01461I
u = 0.747479 0.391613I
a = 0.75255 1.32580I
b = 0.169565 + 0.296554I
2.04760 + 1.75942I 6.85085 5.01461I
u = 1.070290 + 0.443484I
a = 0.982216 + 0.740855I
b = 0.692609 + 0.458051I
5.70338 5.68434I 0.20490 + 7.47679I
u = 1.070290 + 0.443484I
a = 1.93478 1.79741I
b = 0.133299 1.346070I
5.70338 5.68434I 0.20490 + 7.47679I
u = 1.070290 0.443484I
a = 0.982216 0.740855I
b = 0.692609 0.458051I
5.70338 + 5.68434I 0.20490 7.47679I
u = 1.070290 0.443484I
a = 1.93478 + 1.79741I
b = 0.133299 + 1.346070I
5.70338 + 5.68434I 0.20490 7.47679I
u = 1.268720 + 0.457284I
a = 0.836002 0.171074I
b = 1.000150 0.693082I
15.2659 + 1.5494I 3.09602 0.66420I
u = 1.268720 + 0.457284I
a = 0.92571 + 2.56606I
b = 0.08422 + 1.59670I
15.2659 + 1.5494I 3.09602 0.66420I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.268720 0.457284I
a = 0.836002 + 0.171074I
b = 1.000150 + 0.693082I
15.2659 1.5494I 3.09602 + 0.66420I
u = 1.268720 0.457284I
a = 0.92571 2.56606I
b = 0.08422 1.59670I
15.2659 1.5494I 3.09602 + 0.66420I
u = 1.260410 + 0.482704I
a = 0.16128 1.54115I
b = 1.020220 0.627490I
15.0770 8.1923I 2.69502 + 5.35870I
u = 1.260410 + 0.482704I
a = 1.45407 + 2.60668I
b = 0.13370 + 1.58929I
15.0770 8.1923I 2.69502 + 5.35870I
u = 1.260410 0.482704I
a = 0.16128 + 1.54115I
b = 1.020220 + 0.627490I
15.0770 + 8.1923I 2.69502 5.35870I
u = 1.260410 0.482704I
a = 1.45407 2.60668I
b = 0.13370 1.58929I
15.0770 + 8.1923I 2.69502 5.35870I
u = 0.193328 + 0.557909I
a = 0.736955 0.543574I
b = 0.057344 1.272060I
3.31411 + 1.73642I 3.57231 4.08118I
u = 0.193328 + 0.557909I
a = 1.31209 0.67705I
b = 0.502458 + 0.520559I
3.31411 + 1.73642I 3.57231 4.08118I
u = 0.193328 0.557909I
a = 0.736955 + 0.543574I
b = 0.057344 + 1.272060I
3.31411 1.73642I 3.57231 + 4.08118I
u = 0.193328 0.557909I
a = 1.31209 + 0.67705I
b = 0.502458 0.520559I
3.31411 1.73642I 3.57231 + 4.08118I
13
III. I
u
3
=
h−u
9
+2u
7
u
5
2u
3
+b+u, u
8
u
7
+· · ·+a+2, u
10
3u
8
+4u
6
u
4
u
2
+1i
(i) Arc colorings
a
2
=
0
u
a
6
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
u
3
+ u
a
8
=
u
6
u
4
+ 1
u
8
2u
6
+ 2u
4
a
11
=
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ u
3
+ u
2
+ u 2
u
9
2u
7
+ u
5
+ 2u
3
u
a
5
=
u
8
u
7
2u
6
+ 2u
5
+ 2u
4
2u
3
+ u
2
u
1
a
12
=
u
9
2u
7
+ u
5
+ 2u
3
u
0
a
10
=
u
9
+ u
8
+ 3u
7
3u
6
3u
5
+ 3u
4
u
3
+ u
2
+ 2u 2
u
9
2u
7
+ u
5
+ 2u
3
u
a
4
=
u
8
u
7
2u
6
+ 2u
5
+ 2u
4
2u
3
+ u
2
2u
u
3
+ u 1
a
9
=
u
8
+ 3u
6
3u
4
+ 1
u
8
2u
6
+ 2u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
8
8u
6
+ 8u
4
+ 4u
2
4
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
5
3u
4
+ 4u
3
u
2
u + 1)
2
c
2
, c
6
u
10
3u
8
+ 4u
6
u
4
u
2
+ 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(u
2
+ 1)
5
c
7
, c
8
, c
12
u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
c
2
, c
6
(y
5
3y
4
+ 4y
3
y
2
y + 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(y + 1)
10
c
7
, c
8
, c
12
(y
5
+ 5y
4
+ 8y
3
+ 3y
2
y + 1)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.822375 + 0.339110I
a = 1.88547 1.25135I
b = 1.000000I
3.61897 + 1.53058I 0.51511 4.43065I
u = 0.822375 0.339110I
a = 1.88547 + 1.25135I
b = 1.000000I
3.61897 1.53058I 0.51511 + 4.43065I
u = 0.822375 + 0.339110I
a = 0.32986 + 1.50891I
b = 1.000000I
3.61897 1.53058I 0.51511 + 4.43065I
u = 0.822375 0.339110I
a = 0.32986 1.50891I
b = 1.000000I
3.61897 + 1.53058I 0.51511 4.43065I
u = 0.766826I
a = 0.821196 0.370286I
b = 1.000000I
5.69095 1.48110
u = 0.766826I
a = 0.821196 + 0.370286I
b = 1.000000I
5.69095 1.48110
u = 1.200150 + 0.455697I
a = 1.56305 1.07974I
b = 1.000000I
9.16243 + 4.40083I 4.74431 3.49859I
u = 1.200150 0.455697I
a = 1.56305 + 1.07974I
b = 1.000000I
9.16243 4.40083I 4.74431 + 3.49859I
u = 1.200150 + 0.455697I
a = 0.186244 1.292420I
b = 1.000000I
9.16243 4.40083I 4.74431 + 3.49859I
u = 1.200150 0.455697I
a = 0.186244 + 1.292420I
b = 1.000000I
9.16243 + 4.40083I 4.74431 3.49859I
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
5
3u
4
+ 4u
3
u
2
u + 1)
2
)(u
15
+ 9u
14
+ ··· 4u
2
+ 1)
2
· (u
26
+ 15u
25
+ ··· + 17u + 4)
c
2
, c
6
(u
10
3u
8
+ 4u
6
u
4
u
2
+ 1)(u
15
+ u
14
+ ··· 2u 1)
2
· (u
26
3u
25
+ ··· 11u + 2)
c
3
, c
4
, c
5
c
9
, c
10
, c
11
((u
2
+ 1)
5
)(u
26
+ 18u
24
+ ··· u + 1)(u
30
+ u
29
+ ··· + 54u + 17)
c
7
, c
8
, c
12
(u
10
+ 5u
8
+ 8u
6
+ 3u
4
u
2
+ 1)(u
15
+ 3u
14
+ ··· + 8u
2
1)
2
· (u
26
9u
25
+ ··· 215u + 26)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
5
y
4
+ 8y
3
3y
2
+ 3y 1)
2
)(y
15
5y
14
+ ··· + 8y 1)
2
· (y
26
7y
25
+ ··· + 207y + 16)
c
2
, c
6
((y
5
3y
4
+ 4y
3
y
2
y + 1)
2
)(y
15
9y
14
+ ··· + 4y
2
1)
2
· (y
26
15y
25
+ ··· 17y + 4)
c
3
, c
4
, c
5
c
9
, c
10
, c
11
((y + 1)
10
)(y
26
+ 36y
25
+ ··· + 5y + 1)
· (y
30
+ 27y
29
+ ··· + 4428y + 289)
c
7
, c
8
, c
12
((y
5
+ 5y
4
+ 8y
3
+ 3y
2
y + 1)
2
)(y
15
+ 19y
14
+ ··· + 16y 1)
2
· (y
26
+ 29y
25
+ ··· 257y + 676)
19