12a
0640
(K12a
0640
)
A knot diagram
1
Linearized knot diagam
3 7 10 11 8 2 6 5 12 1 9 4
Solving Sequence
2,7 3,10
4 1 11 6 8 5 12 9
c
2
c
3
c
1
c
10
c
6
c
7
c
5
c
12
c
9
c
4
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h−1.25642 × 10
19
u
64
2.04945 × 10
19
u
63
+ ··· + 2.31572 × 10
19
b 3.37503 × 10
19
,
3.33691 × 10
20
u
64
+ 8.52592 × 10
20
u
63
+ ··· + 1.62101 × 10
20
a + 6.63020 × 10
20
, u
65
+ 2u
64
+ ··· 3u 1i
I
u
2
= hb 1, u
2
+ a + u, u
3
+ u
2
1i
* 2 irreducible components of dim
C
= 0, with total 68 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−1.26×10
19
u
64
2.05×10
19
u
63
+· · ·+2.32×10
19
b3.38×10
19
, 3.34×
10
20
u
64
+8.53×10
20
u
63
+· · ·+1.62×10
20
a+6.63×10
20
, u
65
+2u
64
+· · ·3u1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
10
=
2.05854u
64
5.25965u
63
+ ··· 6.06473u 4.09018
0.542560u
64
+ 0.885015u
63
+ ··· + 6.46360u + 1.45744
a
4
=
4.79404u
64
9.62296u
63
+ ··· 15.4240u 0.688537
0.228872u
64
+ 3.24003u
63
+ ··· + 15.0884u + 3.99997
a
1
=
u
2
+ 1
u
4
a
11
=
2.02908u
64
5.22916u
63
+ ··· 8.16807u 4.20542
0.571011u
64
+ 0.942649u
63
+ ··· + 6.49245u + 1.42898
a
6
=
u
u
a
8
=
u
3
u
3
+ u
a
5
=
u
5
+ u
u
5
u
3
+ u
a
12
=
2.19411u
64
+ 5.79390u
63
+ ··· + 9.22067u + 4.42305
0.605690u
64
1.01153u
63
+ ··· 5.60577u 1.39431
a
9
=
u
7
2u
3
u
7
+ u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
528336484950614213199
162100580461622483569
u
64
1127997666238273519001
162100580461622483569
u
63
+ ···
1505544510775395115944
162100580461622483569
u
463719068585525000616
162100580461622483569
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
7
c
8
u
65
+ 12u
64
+ ··· + 7u + 1
c
2
, c
6
u
65
2u
64
+ ··· 3u + 1
c
3
u
65
+ 3u
64
+ ··· 742u + 44
c
4
u
65
+ u
64
+ ··· + 432488u + 133561
c
9
, c
11
u
65
+ 4u
64
+ ··· + 24u + 1
c
10
u
65
11u
64
+ ··· + 20u 8
c
12
u
65
+ 4u
64
+ ··· + u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
c
8
y
65
+ 84y
64
+ ··· 5y 1
c
2
, c
6
y
65
12y
64
+ ··· + 7y 1
c
3
y
65
+ 83y
64
+ ··· 100900y 1936
c
4
y
65
+ 19y
64
+ ··· + 435178968530y 17838540721
c
9
, c
11
y
65
54y
64
+ ··· + 1032y 1
c
10
y
65
+ 21y
64
+ ··· + 464y 64
c
12
y
65
8y
64
+ ··· + 7y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.820055 + 0.571414I
a = 0.75883 1.23938I
b = 0.689094 0.473723I
1.92122 + 2.92849I 1.28212 3.41898I
u = 0.820055 0.571414I
a = 0.75883 + 1.23938I
b = 0.689094 + 0.473723I
1.92122 2.92849I 1.28212 + 3.41898I
u = 0.969463 + 0.241716I
a = 1.47695 0.01532I
b = 0.541831 0.359416I
1.53983 + 7.60011I 3.30399 8.68829I
u = 0.969463 0.241716I
a = 1.47695 + 0.01532I
b = 0.541831 + 0.359416I
1.53983 7.60011I 3.30399 + 8.68829I
u = 0.744354 + 0.673066I
a = 1.77437 + 1.77616I
b = 2.00526 0.95542I
6.17006 0.54961I 7.09242 + 0.I
u = 0.744354 0.673066I
a = 1.77437 1.77616I
b = 2.00526 + 0.95542I
6.17006 + 0.54961I 7.09242 + 0.I
u = 0.596268 + 0.796205I
a = 0.84320 + 1.39289I
b = 1.84547 + 0.11090I
7.82451 + 7.18297I 3.58934 3.88549I
u = 0.596268 0.796205I
a = 0.84320 1.39289I
b = 1.84547 0.11090I
7.82451 7.18297I 3.58934 + 3.88549I
u = 0.558053 + 0.817613I
a = 0.294812 + 1.037710I
b = 0.840197 + 0.843216I
7.30694 + 1.58876I 6.94400 2.45858I
u = 0.558053 0.817613I
a = 0.294812 1.037710I
b = 0.840197 0.843216I
7.30694 1.58876I 6.94400 + 2.45858I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.998178 + 0.175665I
a = 0.203083 + 0.942676I
b = 0.383549 + 0.157322I
1.14078 + 1.78516I 1.11805 3.43956I
u = 0.998178 0.175665I
a = 0.203083 0.942676I
b = 0.383549 0.157322I
1.14078 1.78516I 1.11805 + 3.43956I
u = 0.767755 + 0.612962I
a = 3.39308 + 2.93420I
b = 3.54263 + 0.73826I
3.80285 + 2.31034I 25.0391 + 4.5996I
u = 0.767755 0.612962I
a = 3.39308 2.93420I
b = 3.54263 0.73826I
3.80285 2.31034I 25.0391 4.5996I
u = 0.812707 + 0.650110I
a = 0.19129 + 2.01588I
b = 2.00190 + 1.46282I
5.94798 4.38359I 6.03810 + 7.34576I
u = 0.812707 0.650110I
a = 0.19129 2.01588I
b = 2.00190 1.46282I
5.94798 + 4.38359I 6.03810 7.34576I
u = 0.870827 + 0.601767I
a = 1.54614 1.58787I
b = 1.54992 + 0.15321I
1.78299 6.95651I 0. + 9.98928I
u = 0.870827 0.601767I
a = 1.54614 + 1.58787I
b = 1.54992 0.15321I
1.78299 + 6.95651I 0. 9.98928I
u = 0.648812 + 0.671920I
a = 0.167707 0.999965I
b = 1.50126 0.72002I
2.49850 + 2.18973I 1.25971 3.64342I
u = 0.648812 0.671920I
a = 0.167707 + 0.999965I
b = 1.50126 + 0.72002I
2.49850 2.18973I 1.25971 + 3.64342I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.684737 + 0.604855I
a = 1.010310 0.522879I
b = 1.022020 0.286519I
2.35987 + 1.53086I 1.14672 4.64603I
u = 0.684737 0.604855I
a = 1.010310 + 0.522879I
b = 1.022020 + 0.286519I
2.35987 1.53086I 1.14672 + 4.64603I
u = 0.956434 + 0.623323I
a = 1.40109 + 1.80097I
b = 2.02007 + 0.57048I
6.62284 12.39710I 0
u = 0.956434 0.623323I
a = 1.40109 1.80097I
b = 2.02007 0.57048I
6.62284 + 12.39710I 0
u = 0.831440 + 0.172732I
a = 2.04727 0.37107I
b = 0.655355 0.212384I
2.33387 + 3.36125I 9.80190 7.73059I
u = 0.831440 0.172732I
a = 2.04727 + 0.37107I
b = 0.655355 + 0.212384I
2.33387 3.36125I 9.80190 + 7.73059I
u = 0.798114 + 0.280411I
a = 0.172582 1.311990I
b = 0.339896 0.283030I
1.85279 0.67069I 10.04650 + 3.48460I
u = 0.798114 0.280411I
a = 0.172582 + 1.311990I
b = 0.339896 + 0.283030I
1.85279 + 0.67069I 10.04650 3.48460I
u = 0.994683 + 0.610182I
a = 1.168940 + 0.182146I
b = 1.080470 0.508571I
5.85453 + 3.65774I 0
u = 0.994683 0.610182I
a = 1.168940 0.182146I
b = 1.080470 + 0.508571I
5.85453 3.65774I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.886696 + 0.799693I
a = 0.049918 + 0.520198I
b = 0.688654 + 0.067457I
4.04012 + 2.99291I 0
u = 0.886696 0.799693I
a = 0.049918 0.520198I
b = 0.688654 0.067457I
4.04012 2.99291I 0
u = 0.715886
a = 0.806878
b = 0.0728787
1.06061 9.36050
u = 0.036225 + 0.711406I
a = 0.646922 1.148690I
b = 0.293062 0.445219I
4.70553 4.54910I 4.84912 + 4.44515I
u = 0.036225 0.711406I
a = 0.646922 + 1.148690I
b = 0.293062 + 0.445219I
4.70553 + 4.54910I 4.84912 4.44515I
u = 0.660304 + 0.263461I
a = 0.92327 2.16146I
b = 0.65397 1.36006I
1.59886 + 2.23743I 0.09200 8.25781I
u = 0.660304 0.263461I
a = 0.92327 + 2.16146I
b = 0.65397 + 1.36006I
1.59886 2.23743I 0.09200 + 8.25781I
u = 0.923672 + 0.910982I
a = 1.33275 + 0.68563I
b = 2.27621 1.05859I
11.31760 2.00493I 0
u = 0.923672 0.910982I
a = 1.33275 0.68563I
b = 2.27621 + 1.05859I
11.31760 + 2.00493I 0
u = 0.920176 + 0.922248I
a = 0.437881 + 1.136740I
b = 2.72886 + 0.25698I
11.70890 2.29417I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.920176 0.922248I
a = 0.437881 1.136740I
b = 2.72886 0.25698I
11.70890 + 2.29417I 0
u = 0.948041 + 0.898495I
a = 0.00686 + 1.89178I
b = 2.10420 + 1.27127I
11.23820 4.66383I 0
u = 0.948041 0.898495I
a = 0.00686 1.89178I
b = 2.10420 1.27127I
11.23820 + 4.66383I 0
u = 0.938818 + 0.910131I
a = 1.94266 3.67219I
b = 6.37132 0.20498I
13.25270 3.35212I 0
u = 0.938818 0.910131I
a = 1.94266 + 3.67219I
b = 6.37132 + 0.20498I
13.25270 + 3.35212I 0
u = 0.906041 + 0.944348I
a = 0.96248 1.58621I
b = 3.52611 + 0.26832I
17.2883 8.5608I 0
u = 0.906041 0.944348I
a = 0.96248 + 1.58621I
b = 3.52611 0.26832I
17.2883 + 8.5608I 0
u = 0.902391 + 0.951587I
a = 0.047768 1.069910I
b = 1.97152 0.78996I
16.6895 + 0.2053I 0
u = 0.902391 0.951587I
a = 0.047768 + 1.069910I
b = 1.97152 + 0.78996I
16.6895 0.2053I 0
u = 0.936676 + 0.920511I
a = 1.11522 1.81897I
b = 3.01179 + 1.07212I
15.9561 + 1.1091I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.936676 0.920511I
a = 1.11522 + 1.81897I
b = 3.01179 1.07212I
15.9561 1.1091I 0
u = 0.958520 + 0.902088I
a = 0.73789 + 1.98899I
b = 2.69761 0.07690I
11.5836 + 9.0106I 0
u = 0.958520 0.902088I
a = 0.73789 1.98899I
b = 2.69761 + 0.07690I
11.5836 9.0106I 0
u = 0.948403 + 0.914191I
a = 0.16245 1.67524I
b = 3.04131 1.20975I
15.9177 + 5.6422I 0
u = 0.948403 0.914191I
a = 0.16245 + 1.67524I
b = 3.04131 + 1.20975I
15.9177 5.6422I 0
u = 0.981573 + 0.901998I
a = 0.76506 2.45787I
b = 3.56067 0.50087I
17.0389 + 15.3461I 0
u = 0.981573 0.901998I
a = 0.76506 + 2.45787I
b = 3.56067 + 0.50087I
17.0389 15.3461I 0
u = 0.988719 + 0.902991I
a = 0.98242 1.12974I
b = 2.00991 + 0.63394I
16.4045 7.0166I 0
u = 0.988719 0.902991I
a = 0.98242 + 1.12974I
b = 2.00991 0.63394I
16.4045 + 7.0166I 0
u = 0.656202 + 0.074693I
a = 0.19941 + 2.76051I
b = 0.712381 1.203220I
0.647228 0.175412I 27.9047 7.2168I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.656202 0.074693I
a = 0.19941 2.76051I
b = 0.712381 + 1.203220I
0.647228 + 0.175412I 27.9047 + 7.2168I
u = 0.025083 + 0.412212I
a = 0.276764 + 0.598990I
b = 0.383965 + 0.619009I
0.08844 1.51243I 0.26581 + 4.27826I
u = 0.025083 0.412212I
a = 0.276764 0.598990I
b = 0.383965 0.619009I
0.08844 + 1.51243I 0.26581 4.27826I
u = 0.305765 + 0.261881I
a = 4.05933 1.09380I
b = 0.900970 + 0.336871I
2.53402 0.11660I 3.78096 2.55604I
u = 0.305765 0.261881I
a = 4.05933 + 1.09380I
b = 0.900970 0.336871I
2.53402 + 0.11660I 3.78096 + 2.55604I
11
II. I
u
2
= hb 1, u
2
+ a + u, u
3
+ u
2
1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
10
=
u
2
u
1
a
4
=
u
2
u
u
2
+ u + 1
a
1
=
u
2
+ 1
u
2
u + 1
a
11
=
u
2
u
1
a
6
=
u
u
a
8
=
u
2
1
u
2
+ u 1
a
5
=
1
u
2
a
12
=
u
2
u + 1
1
a
9
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
2
+ 4
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
12
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
3
, c
4
u
3
2u
2
+ u 1
c
6
u
3
u
2
+ 1
c
7
, c
8
u
3
+ u
2
+ 2u + 1
c
9
(u + 1)
3
c
10
u
3
c
11
(u 1)
3
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
c
8
, c
12
y
3
+ 3y
2
+ 2y 1
c
2
, c
6
y
3
y
2
+ 2y 1
c
3
, c
4
y
3
2y
2
3y 1
c
9
, c
11
(y 1)
3
c
10
y
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.662359 + 0.562280I
b = 1.00000
4.66906 + 2.82812I 4.21508 1.30714I
u = 0.877439 0.744862I
a = 0.662359 0.562280I
b = 1.00000
4.66906 2.82812I 4.21508 + 1.30714I
u = 0.754878
a = 1.32472
b = 1.00000
0.531480 4.56980
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
3
u
2
+ 2u 1)(u
65
+ 12u
64
+ ··· + 7u + 1)
c
2
(u
3
+ u
2
1)(u
65
2u
64
+ ··· 3u + 1)
c
3
(u
3
2u
2
+ u 1)(u
65
+ 3u
64
+ ··· 742u + 44)
c
4
(u
3
2u
2
+ u 1)(u
65
+ u
64
+ ··· + 432488u + 133561)
c
6
(u
3
u
2
+ 1)(u
65
2u
64
+ ··· 3u + 1)
c
7
, c
8
(u
3
+ u
2
+ 2u + 1)(u
65
+ 12u
64
+ ··· + 7u + 1)
c
9
((u + 1)
3
)(u
65
+ 4u
64
+ ··· + 24u + 1)
c
10
u
3
(u
65
11u
64
+ ··· + 20u 8)
c
11
((u 1)
3
)(u
65
+ 4u
64
+ ··· + 24u + 1)
c
12
(u
3
u
2
+ 2u 1)(u
65
+ 4u
64
+ ··· + u + 1)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
c
8
(y
3
+ 3y
2
+ 2y 1)(y
65
+ 84y
64
+ ··· 5y 1)
c
2
, c
6
(y
3
y
2
+ 2y 1)(y
65
12y
64
+ ··· + 7y 1)
c
3
(y
3
2y
2
3y 1)(y
65
+ 83y
64
+ ··· 100900y 1936)
c
4
(y
3
2y
2
3y 1)
· (y
65
+ 19y
64
+ ··· + 435178968530y 17838540721)
c
9
, c
11
((y 1)
3
)(y
65
54y
64
+ ··· + 1032y 1)
c
10
y
3
(y
65
+ 21y
64
+ ··· + 464y 64)
c
12
(y
3
+ 3y
2
+ 2y 1)(y
65
8y
64
+ ··· + 7y 1)
17