12a
0641
(K12a
0641
)
A knot diagram
1
Linearized knot diagam
3 7 10 11 8 2 6 12 1 4 5 9
Solving Sequence
3,10
4 11
5,7
2 1 6 8 9 12
c
3
c
10
c
4
c
2
c
1
c
6
c
7
c
9
c
12
c
5
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h9.53641 × 10
31
u
44
+ 1.44960 × 10
32
u
43
+ ··· + 2.63520 × 10
32
b + 1.44504 × 10
33
,
9.27193 × 10
31
u
44
1.41274 × 10
32
u
43
+ ··· + 8.78400 × 10
31
a 1.73256 × 10
33
, u
45
+ u
44
+ ··· + 24u 8i
I
u
2
= h2a
2
2au + 5b + 4a + 1, 4a
3
+ 4a
2
+ 2au + 6a + 7u + 8, u
2
2i
I
v
1
= ha, b v + 1, v
3
2v
2
+ v 1i
* 3 irreducible components of dim
C
= 0, with total 54 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h9.54×10
31
u
44
+1.45×10
32
u
43
+· · ·+2.64×10
32
b+1.45×10
33
, 9.27×
10
31
u
44
1.41×10
32
u
43
+· · ·+8.78×10
31
a1.73×10
33
, u
45
+u
44
+· · ·+24u8i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
7
=
1.05555u
44
+ 1.60831u
43
+ ··· 15.1462u + 19.7241
0.361886u
44
0.550090u
43
+ ··· + 5.74395u 5.48362
a
2
=
0.930140u
44
+ 1.39744u
43
+ ··· 12.0451u + 15.7417
0.248255u
44
0.328783u
43
+ ··· + 4.52710u 4.10460
a
1
=
0.681885u
44
+ 1.06866u
43
+ ··· 7.51802u + 11.6371
0.248255u
44
0.328783u
43
+ ··· + 4.52710u 4.10460
a
6
=
0.373014u
44
+ 0.560645u
43
+ ··· 4.80141u + 7.41655
0.155977u
44
0.247269u
43
+ ··· + 2.81501u 2.80465
a
8
=
0.927559u
44
+ 1.36065u
43
+ ··· 12.7981u + 16.1079
0.251660u
44
0.353713u
43
+ ··· + 2.22074u 3.09854
a
9
=
0.580385u
44
0.859482u
43
+ ··· + 7.87529u 11.2692
0.248579u
44
+ 0.372464u
43
+ ··· 2.39760u + 3.61110
a
12
=
u
3
+ 2u
u
5
3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.877910u
44
+ 1.34478u
43
+ ··· 1.37878u + 23.3266
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
7
u
45
+ 10u
44
+ ··· + 36u + 1
c
2
, c
6
u
45
2u
44
+ ··· 8u + 1
c
3
, c
4
, c
10
c
11
u
45
+ u
44
+ ··· + 24u 8
c
8
, c
9
, c
12
u
45
4u
44
+ ··· + 69u + 23
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
y
45
+ 54y
44
+ ··· + 420y 1
c
2
, c
6
y
45
10y
44
+ ··· + 36y 1
c
3
, c
4
, c
10
c
11
y
45
59y
44
+ ··· + 576y 64
c
8
, c
9
, c
12
y
45
52y
44
+ ··· + 5635y 529
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.926963 + 0.277106I
a = 0.09767 2.10895I
b = 0.912053 + 0.832400I
6.86189 5.36898I 8.49956 + 6.61909I
u = 0.926963 0.277106I
a = 0.09767 + 2.10895I
b = 0.912053 0.832400I
6.86189 + 5.36898I 8.49956 6.61909I
u = 0.941670 + 0.205124I
a = 1.03689 1.25346I
b = 0.891051 + 0.833627I
6.92054 0.83550I 8.82992 1.28747I
u = 0.941670 0.205124I
a = 1.03689 + 1.25346I
b = 0.891051 0.833627I
6.92054 + 0.83550I 8.82992 + 1.28747I
u = 0.023683 + 0.934020I
a = 0.543202 + 0.459579I
b = 0.929182 0.891513I
11.64400 3.29131I 8.32249 + 2.32768I
u = 0.023683 0.934020I
a = 0.543202 0.459579I
b = 0.929182 + 0.891513I
11.64400 + 3.29131I 8.32249 2.32768I
u = 0.846105 + 0.378892I
a = 1.22689 1.16468I
b = 0.954555 + 0.513401I
5.23947 + 5.34835I 7.95547 7.29971I
u = 0.846105 0.378892I
a = 1.22689 + 1.16468I
b = 0.954555 0.513401I
5.23947 5.34835I 7.95547 + 7.29971I
u = 1.039870 + 0.275140I
a = 0.288564 0.168386I
b = 0.452638 + 0.664033I
6.82014 0.93085I 11.70994 + 0.69834I
u = 1.039870 0.275140I
a = 0.288564 + 0.168386I
b = 0.452638 0.664033I
6.82014 + 0.93085I 11.70994 0.69834I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.966296 + 0.676286I
a = 0.61696 + 1.64433I
b = 0.973987 0.877117I
14.4733 + 8.6224I 0
u = 0.966296 0.676286I
a = 0.61696 1.64433I
b = 0.973987 + 0.877117I
14.4733 8.6224I 0
u = 1.009550 + 0.656162I
a = 0.644421 + 0.462034I
b = 0.886665 0.920023I
14.7553 1.9983I 0
u = 1.009550 0.656162I
a = 0.644421 0.462034I
b = 0.886665 + 0.920023I
14.7553 + 1.9983I 0
u = 0.790311
a = 1.71120
b = 0.978813
2.25051 5.01630
u = 0.585865 + 0.317408I
a = 0.78884 + 1.75623I
b = 0.805345 0.377442I
0.16293 3.03748I 3.07976 + 9.52409I
u = 0.585865 0.317408I
a = 0.78884 1.75623I
b = 0.805345 + 0.377442I
0.16293 + 3.03748I 3.07976 9.52409I
u = 1.37682
a = 0.746455
b = 0.218102
6.50761 0
u = 0.131062 + 0.586653I
a = 1.24295 + 0.87480I
b = 0.739277 + 0.534527I
3.06266 2.04715I 4.85763 + 2.56353I
u = 0.131062 0.586653I
a = 1.24295 0.87480I
b = 0.739277 0.534527I
3.06266 + 2.04715I 4.85763 2.56353I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.46705
a = 0.579352
b = 0.870479
4.13430 0
u = 0.519844 + 0.033701I
a = 0.914229 + 0.857221I
b = 0.417105 0.301945I
0.905318 + 0.103320I 10.97546 0.25661I
u = 0.519844 0.033701I
a = 0.914229 0.857221I
b = 0.417105 + 0.301945I
0.905318 0.103320I 10.97546 + 0.25661I
u = 1.54974 + 0.04851I
a = 0.02206 + 1.51683I
b = 0.884978 0.530874I
7.04735 + 4.23377I 0
u = 1.54974 0.04851I
a = 0.02206 1.51683I
b = 0.884978 + 0.530874I
7.04735 4.23377I 0
u = 1.55369 + 0.03708I
a = 0.48020 1.33204I
b = 0.578245 + 0.609458I
8.03802 0.09902I 0
u = 1.55369 0.03708I
a = 0.48020 + 1.33204I
b = 0.578245 0.609458I
8.03802 + 0.09902I 0
u = 0.001231 + 0.423155I
a = 0.622949 0.533249I
b = 0.883296 + 0.781171I
3.96310 + 2.93834I 0.43677 3.36885I
u = 0.001231 0.423155I
a = 0.622949 + 0.533249I
b = 0.883296 0.781171I
3.96310 2.93834I 0.43677 + 3.36885I
u = 0.208519 + 0.357357I
a = 1.310670 0.182130I
b = 0.753961 0.173670I
1.242180 + 0.549575I 4.50079 0.85707I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.208519 0.357357I
a = 1.310670 + 0.182130I
b = 0.753961 + 0.173670I
1.242180 0.549575I 4.50079 + 0.85707I
u = 0.378626
a = 2.77102
b = 0.520904
0.938924 14.9190
u = 1.67565
a = 0.581072
b = 1.13016
11.0611 0
u = 1.68688 + 0.09794I
a = 0.373353 1.216300I
b = 1.087160 + 0.497430I
14.1681 7.1706I 0
u = 1.68688 0.09794I
a = 0.373353 + 1.216300I
b = 1.087160 0.497430I
14.1681 + 7.1706I 0
u = 1.70518 + 0.07345I
a = 0.48413 1.95464I
b = 0.959387 + 0.884389I
16.2110 + 6.7605I 0
u = 1.70518 0.07345I
a = 0.48413 + 1.95464I
b = 0.959387 0.884389I
16.2110 6.7605I 0
u = 1.70989 + 0.04785I
a = 0.92219 1.55641I
b = 0.903637 + 0.911957I
16.3914 0.1365I 0
u = 1.70989 0.04785I
a = 0.92219 + 1.55641I
b = 0.903637 0.911957I
16.3914 + 0.1365I 0
u = 1.72676 + 0.05968I
a = 0.360921 0.923368I
b = 0.343715 + 0.875406I
16.6790 + 2.2118I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.72676 0.05968I
a = 0.360921 + 0.923368I
b = 0.343715 0.875406I
16.6790 2.2118I 0
u = 1.72249 + 0.20334I
a = 0.05274 + 1.88408I
b = 1.020410 0.868678I
15.7769 12.1806I 0
u = 1.72249 0.20334I
a = 0.05274 1.88408I
b = 1.020410 + 0.868678I
15.7769 + 12.1806I 0
u = 1.74036 + 0.18867I
a = 0.891945 + 1.020600I
b = 0.845114 0.962160I
15.2052 + 5.4595I 0
u = 1.74036 0.18867I
a = 0.891945 1.020600I
b = 0.845114 + 0.962160I
15.2052 5.4595I 0
9
II. I
u
2
= h2a
2
2au + 5b + 4a + 1, 4a
3
+ 4a
2
+ 2au + 6a + 7u + 8, u
2
2i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
2
a
11
=
u
u
a
5
=
1
0
a
7
=
a
2
5
a
2
+
2
5
au
4
5
a
1
5
a
2
=
2
5
a
2
u
1
5
au + ···
2
5
a +
1
5
2
5
a
2
u +
1
5
au + ··· +
2
5
a
1
5
a
1
=
1
2
u
2
5
a
2
u +
1
5
au + ··· +
2
5
a
1
5
a
6
=
1
5
a
2
u +
1
5
au + ··· +
1
5
a
4
5
2
5
a
2
u +
3
5
au + ···
2
5
a +
3
5
a
8
=
1
2
u
2
5
a
2
u +
1
5
au + ··· +
2
5
a
1
5
a
9
=
1
2
u
2
5
a
2
u +
1
5
au + ··· +
2
5
a
1
5
a
12
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
8
5
a
2
+
8
5
au
16
5
a +
36
5
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
u
2
+ 1)
2
c
3
, c
4
, c
10
c
11
(u
2
2)
3
c
6
(u
3
+ u
2
1)
2
c
7
(u
3
+ u
2
+ 2u + 1)
2
c
8
, c
9
(u 1)
6
c
12
(u + 1)
6
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
6
(y
3
y
2
+ 2y 1)
2
c
3
, c
4
, c
10
c
11
(y 2)
6
c
8
, c
9
, c
12
(y 1)
6
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41421
a = 1.50656
b = 0.754878
5.46628 4.98050
u = 1.41421
a = 0.25328 + 1.70473I
b = 0.877439 0.744862I
9.60386 + 2.82812I 11.50976 2.97945I
u = 1.41421
a = 0.25328 1.70473I
b = 0.877439 + 0.744862I
9.60386 2.82812I 11.50976 + 2.97945I
u = 1.41421
a = 0.683438 + 0.909550I
b = 0.877439 0.744862I
9.60386 + 2.82812I 11.50976 2.97945I
u = 1.41421
a = 0.683438 0.909550I
b = 0.877439 + 0.744862I
9.60386 2.82812I 11.50976 + 2.97945I
u = 1.41421
a = 0.366877
b = 0.754878
5.46628 4.98050
13
III. I
v
1
= ha, b v + 1, v
3
2v
2
+ v 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
v
0
a
4
=
1
0
a
11
=
v
0
a
5
=
1
0
a
7
=
0
v 1
a
2
=
1
v
2
+ 2v 1
a
1
=
v
2
+ 2v
v
2
+ 2v 1
a
6
=
v 1
v
2
v 1
a
8
=
v
2
2v
v
2
2v + 1
a
9
=
v
2
v
v
2
2v + 1
a
12
=
v
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4v
2
2v + 10
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
3
, c
4
, c
10
c
11
u
3
c
6
u
3
u
2
+ 1
c
7
u
3
+ u
2
+ 2u + 1
c
8
, c
9
(u + 1)
3
c
12
(u 1)
3
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
y
3
+ 3y
2
+ 2y 1
c
2
, c
6
y
3
y
2
+ 2y 1
c
3
, c
4
, c
10
c
11
y
3
c
8
, c
9
, c
12
(y 1)
3
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 0.122561 + 0.744862I
a = 0
b = 0.877439 + 0.744862I
4.66906 + 2.82812I 11.91407 2.22005I
v = 0.122561 0.744862I
a = 0
b = 0.877439 0.744862I
4.66906 2.82812I 11.91407 + 2.22005I
v = 1.75488
a = 0
b = 0.754878
0.531480 5.82810
17
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
((u
3
u
2
+ 2u 1)
3
)(u
45
+ 10u
44
+ ··· + 36u + 1)
c
2
((u
3
u
2
+ 1)
2
)(u
3
+ u
2
1)(u
45
2u
44
+ ··· 8u + 1)
c
3
, c
4
, c
10
c
11
u
3
(u
2
2)
3
(u
45
+ u
44
+ ··· + 24u 8)
c
6
(u
3
u
2
+ 1)(u
3
+ u
2
1)
2
(u
45
2u
44
+ ··· 8u + 1)
c
7
((u
3
+ u
2
+ 2u + 1)
3
)(u
45
+ 10u
44
+ ··· + 36u + 1)
c
8
, c
9
((u 1)
6
)(u + 1)
3
(u
45
4u
44
+ ··· + 69u + 23)
c
12
((u 1)
3
)(u + 1)
6
(u
45
4u
44
+ ··· + 69u + 23)
18
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
((y
3
+ 3y
2
+ 2y 1)
3
)(y
45
+ 54y
44
+ ··· + 420y 1)
c
2
, c
6
((y
3
y
2
+ 2y 1)
3
)(y
45
10y
44
+ ··· + 36y 1)
c
3
, c
4
, c
10
c
11
y
3
(y 2)
6
(y
45
59y
44
+ ··· + 576y 64)
c
8
, c
9
, c
12
((y 1)
9
)(y
45
52y
44
+ ··· + 5635y 529)
19