12a
0642
(K12a
0642
)
A knot diagram
1
Linearized knot diagam
3 7 10 11 8 2 6 12 1 5 4 9
Solving Sequence
3,7
2
1,9
10 4 6 8 5 12 11
c
2
c
1
c
9
c
3
c
6
c
7
c
5
c
12
c
11
c
4
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−2.08528 × 10
21
u
65
+ 3.42453 × 10
21
u
64
+ ··· + 2.45923 × 10
21
b 6.71501 × 10
21
,
7.92933 × 10
20
u
65
+ 2.33303 × 10
21
u
64
+ ··· + 7.37769 × 10
21
a 1.03514 × 10
21
, u
66
2u
65
+ ··· + 5u 3i
I
u
2
= h−u
2
+ b, u
2
+ a u, u
3
+ u
2
1i
I
u
3
= hu
2
a au + u
2
+ b u + 1, 2u
2
a + a
2
2au + 2u
2
u + 1, u
3
u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 75 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−2.09×10
21
u
65
+3.42×10
21
u
64
+· · ·+2.46×10
21
b6.72×10
21
, 7.93×
10
20
u
65
+2.33×10
21
u
64
+· · ·+7.38×10
21
a1.04×10
21
, u
66
2u
65
+· · ·+5u3i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
9
=
0.107477u
65
0.316227u
64
+ ··· + 4.20310u + 0.140307
0.847942u
65
1.39252u
64
+ ··· + 1.15079u + 2.73053
a
10
=
0.116848u
65
+ 0.169205u
64
+ ··· + 7.20302u 0.938417
0.135801u
65
0.253372u
64
+ ··· + 3.19813u + 0.135182
a
4
=
0.435419u
65
0.831909u
64
+ ··· 2.53069u + 0.102436
0.849654u
65
+ 0.956704u
64
+ ··· + 1.71311u 2.32719
a
6
=
u
u
3
+ u
a
8
=
u
3
u
5
u
3
+ u
a
5
=
u
5
+ u
u
7
+ u
5
2u
3
+ u
a
12
=
0.808905u
65
0.823841u
64
+ ··· 1.79298u + 6.02411
0.647456u
65
+ 0.938023u
64
+ ··· + 1.14605u 2.05947
a
11
=
0.228635u
65
+ 0.368246u
64
+ ··· + 5.73814u 0.217095
0.0421408u
65
0.505020u
64
+ ··· + 2.54989u + 1.29366
(ii) Obstruction class = 1
(iii) Cusp Shapes =
6130397275329191743669
1229615623032466676507
u
65
9723677310654894627572
1229615623032466676507
u
64
+ ··· +
20879266412996566941410
1229615623032466676507
u +
23149949036627936894973
1229615623032466676507
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
7
u
66
+ 16u
65
+ ··· + 151u + 9
c
2
, c
6
u
66
2u
65
+ ··· + 5u 3
c
3
u
66
+ u
65
+ ··· + 1808u + 1480
c
4
, c
10
, c
11
u
66
u
65
+ ··· 32u + 8
c
8
, c
9
, c
12
u
66
4u
65
+ ··· 12u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
y
66
+ 72y
65
+ ··· + 1949y + 81
c
2
, c
6
y
66
16y
65
+ ··· 151y + 9
c
3
y
66
25y
65
+ ··· + 8713216y + 2190400
c
4
, c
10
, c
11
y
66
+ 59y
65
+ ··· 128y + 64
c
8
, c
9
, c
12
y
66
66y
65
+ ··· + 210y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.940880 + 0.389587I
a = 0.801166 0.701373I
b = 0.261406 + 0.593445I
5.12964 + 6.16163I 3.04372 8.05147I
u = 0.940880 0.389587I
a = 0.801166 + 0.701373I
b = 0.261406 0.593445I
5.12964 6.16163I 3.04372 + 8.05147I
u = 1.02149
a = 1.32124
b = 0.413413
2.55529 4.40390
u = 0.796362 + 0.550324I
a = 0.924966 0.099092I
b = 0.43221 1.57388I
3.14358 + 2.21788I 4.13427 2.24025I
u = 0.796362 0.550324I
a = 0.924966 + 0.099092I
b = 0.43221 + 1.57388I
3.14358 2.21788I 4.13427 + 2.24025I
u = 1.046540 + 0.097833I
a = 1.322190 0.020742I
b = 0.397058 0.080498I
1.46918 + 3.46747I 0
u = 1.046540 0.097833I
a = 1.322190 + 0.020742I
b = 0.397058 + 0.080498I
1.46918 3.46747I 0
u = 0.921469 + 0.129566I
a = 0.661877 0.412132I
b = 0.514033 + 0.681154I
6.59268 + 0.97290I 7.57653 0.39847I
u = 0.921469 0.129566I
a = 0.661877 + 0.412132I
b = 0.514033 0.681154I
6.59268 0.97290I 7.57653 + 0.39847I
u = 0.833726 + 0.384546I
a = 0.587442 0.795014I
b = 0.144390 + 0.286926I
0.18506 3.20503I 2.36874 + 8.90166I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.833726 0.384546I
a = 0.587442 + 0.795014I
b = 0.144390 0.286926I
0.18506 + 3.20503I 2.36874 8.90166I
u = 0.990925 + 0.475204I
a = 0.428686 + 0.120652I
b = 0.10012 1.70913I
5.36492 5.88722I 0
u = 0.990925 0.475204I
a = 0.428686 0.120652I
b = 0.10012 + 1.70913I
5.36492 + 5.88722I 0
u = 0.498795 + 0.739168I
a = 1.153080 0.711498I
b = 0.622959 1.122100I
4.16450 + 2.72632I 6.92245 3.37892I
u = 0.498795 0.739168I
a = 1.153080 + 0.711498I
b = 0.622959 + 1.122100I
4.16450 2.72632I 6.92245 + 3.37892I
u = 1.029240 + 0.415785I
a = 0.304326 + 0.230817I
b = 0.01201 1.76238I
0.44075 + 9.86566I 0
u = 1.029240 0.415785I
a = 0.304326 0.230817I
b = 0.01201 + 1.76238I
0.44075 9.86566I 0
u = 0.793049 + 0.384644I
a = 1.47843 + 0.13514I
b = 0.776296 0.191562I
3.25737 + 1.93313I 0.42721 3.82999I
u = 0.793049 0.384644I
a = 1.47843 0.13514I
b = 0.776296 + 0.191562I
3.25737 1.93313I 0.42721 + 3.82999I
u = 0.959975 + 0.624161I
a = 0.499021 0.214013I
b = 0.15361 1.51024I
2.82571 + 2.19205I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.959975 0.624161I
a = 0.499021 + 0.214013I
b = 0.15361 + 1.51024I
2.82571 2.19205I 0
u = 0.886053 + 0.741340I
a = 0.89572 1.29867I
b = 0.177451 1.335260I
1.92250 + 2.81816I 0
u = 0.886053 0.741340I
a = 0.89572 + 1.29867I
b = 0.177451 + 1.335260I
1.92250 2.81816I 0
u = 0.882438 + 0.780869I
a = 0.699653 0.793108I
b = 0.180230 1.231910I
4.00172 2.93689I 0
u = 0.882438 0.780869I
a = 0.699653 + 0.793108I
b = 0.180230 + 1.231910I
4.00172 + 2.93689I 0
u = 0.356962 + 0.735559I
a = 1.16102 0.91617I
b = 0.668874 1.010960I
7.41551 + 1.48844I 10.63091 0.75571I
u = 0.356962 0.735559I
a = 1.16102 + 0.91617I
b = 0.668874 + 1.010960I
7.41551 1.48844I 10.63091 + 0.75571I
u = 0.727878 + 0.303493I
a = 1.48101 + 0.77779I
b = 0.88271 2.24176I
3.78561 1.23006I 1.98020 + 5.99169I
u = 0.727878 0.303493I
a = 1.48101 0.77779I
b = 0.88271 + 2.24176I
3.78561 + 1.23006I 1.98020 5.99169I
u = 0.248411 + 0.746724I
a = 1.07892 1.06631I
b = 0.658592 0.929096I
2.98364 5.69446I 6.38560 + 3.41468I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.248411 0.746724I
a = 1.07892 + 1.06631I
b = 0.658592 + 0.929096I
2.98364 + 5.69446I 6.38560 3.41468I
u = 0.762533 + 0.185034I
a = 0.400057 0.427963I
b = 0.335136 + 0.241912I
1.264720 + 0.575310I 4.44845 0.83683I
u = 0.762533 0.185034I
a = 0.400057 + 0.427963I
b = 0.335136 0.241912I
1.264720 0.575310I 4.44845 + 0.83683I
u = 0.849055 + 0.877486I
a = 0.144726 0.873025I
b = 0.025755 1.136960I
2.96927 + 3.52515I 0
u = 0.849055 0.877486I
a = 0.144726 + 0.873025I
b = 0.025755 + 1.136960I
2.96927 3.52515I 0
u = 0.887168 + 0.853480I
a = 0.936403 0.683518I
b = 0.229264 1.107390I
4.14950 1.92316I 0
u = 0.887168 0.853480I
a = 0.936403 + 0.683518I
b = 0.229264 + 1.107390I
4.14950 + 1.92316I 0
u = 0.825576 + 0.913463I
a = 0.59888 + 3.00432I
b = 1.19791 + 3.03712I
9.28839 + 8.00052I 0
u = 0.825576 0.913463I
a = 0.59888 3.00432I
b = 1.19791 3.03712I
9.28839 8.00052I 0
u = 0.884770 + 0.860589I
a = 0.212411 0.810921I
b = 0.040113 1.187130I
7.38355 + 0.47295I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.884770 0.860589I
a = 0.212411 + 0.810921I
b = 0.040113 + 1.187130I
7.38355 0.47295I 0
u = 0.907494 + 0.841916I
a = 2.68354 + 3.61420I
b = 0.25692 + 4.58473I
2.86142 + 3.13275I 0
u = 0.907494 0.841916I
a = 2.68354 3.61420I
b = 0.25692 4.58473I
2.86142 3.13275I 0
u = 0.854780 + 0.913777I
a = 0.95509 + 2.99116I
b = 0.97675 + 3.23830I
14.5393 3.2940I 0
u = 0.854780 0.913777I
a = 0.95509 2.99116I
b = 0.97675 3.23830I
14.5393 + 3.2940I 0
u = 0.928525 + 0.839216I
a = 0.267321 0.699993I
b = 0.044132 1.250160I
4.02096 4.36836I 0
u = 0.928525 0.839216I
a = 0.267321 + 0.699993I
b = 0.044132 + 1.250160I
4.02096 + 4.36836I 0
u = 0.935049 + 0.841580I
a = 0.997222 0.708350I
b = 0.164677 1.077480I
7.22562 + 5.84884I 0
u = 0.935049 0.841580I
a = 0.997222 + 0.708350I
b = 0.164677 + 1.077480I
7.22562 5.84884I 0
u = 0.886666 + 0.900213I
a = 1.43168 + 3.00902I
b = 0.70096 + 3.51971I
12.21740 1.91088I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.886666 0.900213I
a = 1.43168 3.00902I
b = 0.70096 3.51971I
12.21740 + 1.91088I 0
u = 0.965870 + 0.830951I
a = 1.048900 0.703382I
b = 0.122028 1.049300I
2.60149 9.86130I 0
u = 0.965870 0.830951I
a = 1.048900 + 0.703382I
b = 0.122028 + 1.049300I
2.60149 + 9.86130I 0
u = 0.957311 + 0.866384I
a = 2.46807 + 2.30758I
b = 0.30755 + 3.64760I
11.99000 4.61174I 0
u = 0.957311 0.866384I
a = 2.46807 2.30758I
b = 0.30755 3.64760I
11.99000 + 4.61174I 0
u = 0.998275 + 0.835366I
a = 2.75742 + 1.52819I
b = 0.88652 + 3.29956I
8.7382 14.4571I 0
u = 0.998275 0.835366I
a = 2.75742 1.52819I
b = 0.88652 3.29956I
8.7382 + 14.4571I 0
u = 0.983999 + 0.853365I
a = 2.61145 + 1.85077I
b = 0.63135 + 3.43344I
14.1256 + 9.8142I 0
u = 0.983999 0.853365I
a = 2.61145 1.85077I
b = 0.63135 3.43344I
14.1256 9.8142I 0
u = 0.482668 + 0.473305I
a = 0.026115 1.148390I
b = 0.243945 0.319913I
2.37826 + 1.37049I 3.17735 4.52175I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.482668 0.473305I
a = 0.026115 + 1.148390I
b = 0.243945 + 0.319913I
2.37826 1.37049I 3.17735 + 4.52175I
u = 0.268428 + 0.572165I
a = 0.433288 + 0.777956I
b = 0.434835 + 0.673053I
3.09183 2.58712I 2.42181 + 3.21581I
u = 0.268428 0.572165I
a = 0.433288 0.777956I
b = 0.434835 0.673053I
3.09183 + 2.58712I 2.42181 3.21581I
u = 0.438013 + 0.335978I
a = 0.778089 + 0.240873I
b = 0.555725 + 0.212651I
0.967621 + 0.114990I 10.14067 0.04829I
u = 0.438013 0.335978I
a = 0.778089 0.240873I
b = 0.555725 0.212651I
0.967621 0.114990I 10.14067 + 0.04829I
u = 0.493664
a = 1.46260
b = 0.604228
0.957505 14.1910
11
II. I
u
2
= h−u
2
+ b, u
2
+ a u, u
3
+ u
2
1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
9
=
u
2
+ u
u
2
a
10
=
u + 1
0
a
4
=
1
0
a
6
=
u
u
2
+ u 1
a
8
=
u
2
1
u
2
a
5
=
1
0
a
12
=
u + 1
0
a
11
=
u + 1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
10u + 4
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
u
3
u
2
+ 2u 1
c
2
u
3
+ u
2
1
c
3
, c
4
, c
10
c
11
u
3
c
6
u
3
u
2
+ 1
c
7
u
3
+ u
2
+ 2u + 1
c
8
, c
9
(u + 1)
3
c
12
(u 1)
3
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
y
3
+ 3y
2
+ 2y 1
c
2
, c
6
y
3
y
2
+ 2y 1
c
3
, c
4
, c
10
c
11
y
3
c
8
, c
9
, c
12
(y 1)
3
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.662359 0.562280I
b = 0.215080 1.307140I
4.66906 + 2.82812I 11.91407 2.22005I
u = 0.877439 0.744862I
a = 0.662359 + 0.562280I
b = 0.215080 + 1.307140I
4.66906 2.82812I 11.91407 + 2.22005I
u = 0.754878
a = 1.32472
b = 0.569840
0.531480 5.82810
15
III.
I
u
3
= hu
2
a au + u
2
+ b u + 1, 2u
2
a + a
2
2au + 2u
2
u + 1, u
3
u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
2
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
9
=
a
u
2
a + au u
2
+ u 1
a
10
=
u
2
+ a 1
u
2
a + au + u 1
a
4
=
u
2
a + au u
2
a + 4u
2
a
6
=
u
u
2
+ u + 1
a
8
=
u
2
+ 1
u
2
a
5
=
1
0
a
12
=
u
2
a + 1
u
2
a au u + 1
a
11
=
u
2
a + au + u
2
+ a + u 2
u
2
a + au + u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
(u
3
u
2
+ 2u 1)
2
c
2
(u
3
u
2
+ 1)
2
c
3
, c
4
, c
10
c
11
(u
2
+ 2)
3
c
6
(u
3
+ u
2
1)
2
c
7
(u
3
+ u
2
+ 2u + 1)
2
c
8
, c
9
(u 1)
6
c
12
(u + 1)
6
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
6
(y
3
y
2
+ 2y 1)
2
c
3
, c
4
, c
10
c
11
(y + 2)
6
c
8
, c
9
, c
12
(y 1)
6
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.877439 + 0.744862I
a = 0.391035 + 0.678606I
b = 0.215080 + 0.107072I
0.26574 2.82812I 3.50976 + 2.97945I
u = 0.877439 + 0.744862I
a = 1.71575 1.80317I
b = 0.21508 2.72135I
0.26574 2.82812I 3.50976 + 2.97945I
u = 0.877439 0.744862I
a = 0.391035 0.678606I
b = 0.215080 0.107072I
0.26574 + 2.82812I 3.50976 2.97945I
u = 0.877439 0.744862I
a = 1.71575 + 1.80317I
b = 0.21508 + 2.72135I
0.26574 + 2.82812I 3.50976 2.97945I
u = 0.754878
a = 1.32472 + 1.06756I
b = 0.56984 1.41421I
4.40332 3.01950
u = 0.754878
a = 1.32472 1.06756I
b = 0.56984 + 1.41421I
4.40332 3.01950
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
((u
3
u
2
+ 2u 1)
3
)(u
66
+ 16u
65
+ ··· + 151u + 9)
c
2
((u
3
u
2
+ 1)
2
)(u
3
+ u
2
1)(u
66
2u
65
+ ··· + 5u 3)
c
3
u
3
(u
2
+ 2)
3
(u
66
+ u
65
+ ··· + 1808u + 1480)
c
4
, c
10
, c
11
u
3
(u
2
+ 2)
3
(u
66
u
65
+ ··· 32u + 8)
c
6
(u
3
u
2
+ 1)(u
3
+ u
2
1)
2
(u
66
2u
65
+ ··· + 5u 3)
c
7
((u
3
+ u
2
+ 2u + 1)
3
)(u
66
+ 16u
65
+ ··· + 151u + 9)
c
8
, c
9
((u 1)
6
)(u + 1)
3
(u
66
4u
65
+ ··· 12u 1)
c
12
((u 1)
3
)(u + 1)
6
(u
66
4u
65
+ ··· 12u 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
((y
3
+ 3y
2
+ 2y 1)
3
)(y
66
+ 72y
65
+ ··· + 1949y + 81)
c
2
, c
6
((y
3
y
2
+ 2y 1)
3
)(y
66
16y
65
+ ··· 151y + 9)
c
3
y
3
(y + 2)
6
(y
66
25y
65
+ ··· + 8713216y + 2190400)
c
4
, c
10
, c
11
y
3
(y + 2)
6
(y
66
+ 59y
65
+ ··· 128y + 64)
c
8
, c
9
, c
12
((y 1)
9
)(y
66
66y
65
+ ··· + 210y + 1)
21