12a
0647
(K12a
0647
)
A knot diagram
1
Linearized knot diagam
3 7 10 11 9 2 12 5 6 4 1 8
Solving Sequence
3,10
4 11
5,7
2 1 12 6 9 8
c
3
c
10
c
4
c
2
c
1
c
11
c
6
c
9
c
8
c
5
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
15
6u
14
+ ··· + 8b 10, u
14
3u
13
+ ··· + 8a 2, u
16
3u
15
+ ··· + 13u
2
2i
I
u
2
= h9u
7
7u
6
24u
5
u
4
+ 13u
3
+ 35u
2
+ 23b + 8u 39,
66u
7
13u
6
153u
5
107u
4
+ 149u
3
+ 249u
2
+ 161a 64u 194,
u
8
2u
7
2u
6
+ 4u
5
+ 3u
4
u
3
5u
2
4u + 7i
I
u
3
= h−u
11
a u
10
a + ··· + 2a 3, 2u
11
a u
11
+ ··· 4a + 1,
u
12
+ u
11
7u
10
6u
9
+ 18u
8
+ 11u
7
19u
6
2u
5
+ 6u
4
8u
3
+ 1i
I
u
4
= h−340u
15
a 770u
15
+ ··· + 249a + 651, 180u
15
a + 621u
15
+ ··· 493a + 1534,
u
16
+ u
15
+ ··· + 6u 1i
I
u
5
= h2a
3
+ 2a
2
+ b + 5a + 3, 2a
4
+ 2a
3
+ 5a
2
+ 4a + 1, u 1i
I
u
6
= hu
3
+ b u 1, u
11
+ 4u
9
+ 4u
8
7u
7
11u
6
+ 2u
5
+ 12u
4
+ 3u
3
4u
2
+ 2a u + 1,
u
12
u
11
4u
10
+ 9u
8
+ 6u
7
7u
6
10u
5
3u
4
+ 3u
3
+ 5u
2
+ 2u + 1i
I
u
7
= hb 1, 6a + u 3, u
2
3i
I
u
8
= h−2au + 4b + 2a u + 5, 4a
2
+ 4a 7, u
2
2u + 1i
I
u
9
= hb, a + 1, u + 1i
I
u
10
= h2a
3
+ 4a
2
+ b + 6a + 3, 2a
4
+ 4a
3
+ 6a
2
+ 4a + 1, u + 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
11
= hb + 1, u 1i
I
v
1
= ha, b 1, v + 1i
* 11 irreducible components of dim
C
= 0, with total 108 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
=
hu
15
6u
14
+· · ·+8b 10, u
14
3u
13
+· · ·+8a 2, u
16
3u
15
+· · ·+13u
2
2i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
1
8
u
14
+
3
8
u
13
+ ··· +
1
2
u +
1
4
1
8
u
15
+
3
4
u
14
+ ···
3
4
u +
5
4
a
2
=
1
8
u
14
+
3
8
u
13
+ ··· +
1
2
u +
1
4
5
8
u
15
3
2
u
14
+ ··· +
7
4
u
3
4
a
1
=
5
8
u
15
13
8
u
14
+ ··· +
9
4
u
1
2
5
8
u
15
3
2
u
14
+ ··· +
7
4
u
3
4
a
12
=
1
8
u
14
3
8
u
13
+ ···
1
2
u
1
4
1
8
u
15
+
3
4
u
14
+ ··· +
5
4
u +
1
4
a
6
=
1
1
4
u
15
3
4
u
14
+ ··· + 3u
2
+
1
2
u
a
9
=
u
1
4
u
14
3
4
u
13
+ ··· + u +
1
2
a
8
=
u
3
+ 2u
1
4
u
14
3
4
u
13
+ ··· + u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes =
1
4
u
15
+
1
2
u
14
7
2
u
13
13
4
u
12
+ 16u
11
+
25
4
u
10
26u
9
15
4
u
8
2u
7
+ 3u
6
+
71
2
u
5
+ 3u
4
43
4
u
3
73
4
u
2
17
2
u
25
2
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
16
+ 7u
15
+ ··· + 44u + 4
c
2
, c
6
, c
7
c
12
u
16
3u
15
+ ··· + 2u + 2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
16
+ 3u
15
+ ··· + 13u
2
2
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
16
+ 9y
15
+ ··· 912y + 16
c
2
, c
6
, c
7
c
12
y
16
7y
15
+ ··· 44y + 4
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
16
21y
15
+ ··· 52y + 4
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.460675 + 0.652431I
a = 0.24371 1.70252I
b = 1.082390 + 0.575570I
0.65793 + 8.23117I 13.0423 9.7478I
u = 0.460675 0.652431I
a = 0.24371 + 1.70252I
b = 1.082390 0.575570I
0.65793 8.23117I 13.0423 + 9.7478I
u = 0.072765 + 0.670397I
a = 0.742469 + 1.137170I
b = 0.597448 0.616549I
2.40804 1.30590I 6.45602 + 2.87023I
u = 0.072765 0.670397I
a = 0.742469 1.137170I
b = 0.597448 + 0.616549I
2.40804 + 1.30590I 6.45602 2.87023I
u = 1.373820 + 0.091320I
a = 0.060941 1.153540I
b = 0.954330 + 0.864485I
4.84234 + 6.50433I 18.6838 5.6582I
u = 1.373820 0.091320I
a = 0.060941 + 1.153540I
b = 0.954330 0.864485I
4.84234 6.50433I 18.6838 + 5.6582I
u = 0.600707 + 0.156541I
a = 0.458062 0.140381I
b = 0.995675 + 0.611607I
1.05898 4.82166I 12.56614 + 2.63826I
u = 0.600707 0.156541I
a = 0.458062 + 0.140381I
b = 0.995675 0.611607I
1.05898 + 4.82166I 12.56614 2.63826I
u = 1.46308 + 0.25525I
a = 0.482041 0.685495I
b = 0.313593 + 0.976118I
7.57778 5.08797I 15.4427 + 2.0730I
u = 1.46308 0.25525I
a = 0.482041 + 0.685495I
b = 0.313593 0.976118I
7.57778 + 5.08797I 15.4427 2.0730I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.54279 + 0.38128I
a = 0.60505 + 1.42874I
b = 1.251330 0.593482I
13.5367 16.5917I 19.8881 + 8.7336I
u = 1.54279 0.38128I
a = 0.60505 1.42874I
b = 1.251330 + 0.593482I
13.5367 + 16.5917I 19.8881 8.7336I
u = 0.312284
a = 0.735032
b = 0.360485
0.574194 17.1260
u = 1.73739 + 0.15693I
a = 0.464177 + 0.067848I
b = 1.109290 0.308310I
17.5882 + 1.3769I 22.4716 5.7757I
u = 1.73739 0.15693I
a = 0.464177 0.067848I
b = 1.109290 + 0.308310I
17.5882 1.3769I 22.4716 + 5.7757I
u = 1.78286
a = 0.547112
b = 0.827780
15.7038 9.77250
7
II. I
u
2
=
h9u
7
7u
6
+· · ·+23b39, 66u
7
13u
6
+· · ·+161a194, u
8
2u
7
+· · ·4u+7i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
0.409938u
7
+ 0.0807453u
6
+ ··· + 0.397516u + 1.20497
0.391304u
7
+ 0.304348u
6
+ ··· 0.347826u + 1.69565
a
2
=
0.732919u
7
0.204969u
6
+ ··· 0.316770u 3.36646
0.130435u
7
0.434783u
6
+ ··· 0.217391u 1.56522
a
1
=
0.863354u
7
0.639752u
6
+ ··· 0.534161u 4.93168
0.130435u
7
0.434783u
6
+ ··· 0.217391u 1.56522
a
12
=
0.0248447u
7
+ 0.298137u
6
+ ··· 0.993789u + 0.987578
0.521739u
7
+ 0.260870u
6
+ ··· + 1.13043u 2.26087
a
6
=
0.161491u
7
+ 0.0621118u
6
+ ··· 0.540373u 0.919255
0.652174u
7
+ 0.173913u
6
+ ··· + 0.0869565u + 2.82609
a
9
=
0.118012u
7
+ 0.416149u
6
+ ··· + 1.27950u 0.559006
0.869565u
7
0.565217u
6
+ ··· + 1.21739u 3.43478
a
8
=
0.987578u
7
0.149068u
6
+ ··· + 0.496894u 3.99379
1.17391u
7
0.913043u
6
+ ··· 0.956522u 7.08696
(ii) Obstruction class = 1
(iii) Cusp Shapes =
12
23
u
7
+
52
23
u
6
32
23
u
5
124
23
u
4
44
23
u
3
+
108
23
u
2
+
72
23
u
374
23
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
4
+ 3u
3
+ 5u
2
+ 3u + 1)
2
c
2
, c
6
, c
7
c
12
(u
4
+ u
3
u
2
u + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
8
+ 2u
7
2u
6
4u
5
+ 3u
4
+ u
3
5u
2
+ 4u + 7
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y
4
+ y
3
+ 9y
2
+ y + 1)
2
c
2
, c
6
, c
7
c
12
(y
4
3y
3
+ 5y
2
3y + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
8
8y
7
+ 26y
6
42y
5
+ 35y
4
27y
3
+ 59y
2
86y + 49
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.443967 + 1.001530I
a = 0.33695 + 1.52789I
b = 1.192440 0.547877I
7.14707 + 11.56320I 17.7958 8.2615I
u = 0.443967 1.001530I
a = 0.33695 1.52789I
b = 1.192440 + 0.547877I
7.14707 11.56320I 17.7958 + 8.2615I
u = 1.160120 + 0.413025I
a = 0.047679 + 0.419061I
b = 0.692440 + 0.318148I
4.36747 + 1.41376I 16.2042 4.7974I
u = 1.160120 0.413025I
a = 0.047679 0.419061I
b = 0.692440 0.318148I
4.36747 1.41376I 16.2042 + 4.7974I
u = 1.230820 + 0.345720I
a = 0.764039 0.865204I
b = 0.692440 + 0.318148I
4.36747 + 1.41376I 16.2042 4.7974I
u = 1.230820 0.345720I
a = 0.764039 + 0.865204I
b = 0.692440 0.318148I
4.36747 1.41376I 16.2042 + 4.7974I
u = 1.51466 + 0.24279I
a = 0.98189 1.11892I
b = 1.192440 + 0.547877I
7.14707 11.56320I 17.7958 + 8.2615I
u = 1.51466 0.24279I
a = 0.98189 + 1.11892I
b = 1.192440 0.547877I
7.14707 + 11.56320I 17.7958 8.2615I
11
III. I
u
3
=
h−u
11
au
10
a+· · ·+2a3, 2u
11
au
11
+· · ·4a+1, u
12
+u
11
+· · ·8u
3
+1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
a
1
2
u
11
a +
1
2
u
10
a + ··· a +
3
2
a
2
=
a
u
11
a u
10
a + ··· + a
3
2
a
1
=
u
11
a u
10
a + ··· + 2a
3
2
u
11
a u
10
a + ··· + a
3
2
a
12
=
1
2
u
10
a
1
2
u
10
+ ···
3
2
a +
3
2
1
a
6
=
1
1
2
u
11
1
2
u
10
+ ··· + 3u
2
+
1
2
u
a
9
=
u
1
2
u
10
1
2
u
9
+ ··· + u +
1
2
a
8
=
u
3
+ 2u
1
2
u
10
1
2
u
9
+ ··· + u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
11
u
10
+ 15u
9
+ 4u
8
41u
7
+ 2u
6
+ 46u
5
25u
4
14u
3
+ 23u
2
4u 13
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
24
+ 13u
23
+ ··· + 280u + 121
c
2
, c
6
, c
7
c
12
u
24
3u
23
+ ··· 40u + 11
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(u
12
u
11
7u
10
+ 6u
9
+ 18u
8
11u
7
19u
6
+ 2u
5
+ 6u
4
+ 8u
3
+ 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
24
5y
23
+ ··· + 60024y + 14641
c
2
, c
6
, c
7
c
12
y
24
13y
23
+ ··· 280y + 121
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y
12
15y
11
+ ··· + 12y
2
+ 1)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.298602 + 0.646764I
a = 0.676873 0.802179I
b = 0.385582 + 0.728163I
1.36284 3.28049I 9.00565 + 5.25300I
u = 0.298602 + 0.646764I
a = 0.14585 + 1.81517I
b = 0.956017 0.547380I
1.36284 3.28049I 9.00565 + 5.25300I
u = 0.298602 0.646764I
a = 0.676873 + 0.802179I
b = 0.385582 0.728163I
1.36284 + 3.28049I 9.00565 5.25300I
u = 0.298602 0.646764I
a = 0.14585 1.81517I
b = 0.956017 + 0.547380I
1.36284 + 3.28049I 9.00565 5.25300I
u = 1.37505
a = 0.230814 + 1.020720I
b = 0.789240 0.932040I
4.33833 18.1100
u = 1.37505
a = 0.230814 1.020720I
b = 0.789240 + 0.932040I
4.33833 18.1100
u = 0.527999
a = 0.534112 + 0.186718I
b = 0.668373 0.583240I
0.0415570 11.1730
u = 0.527999
a = 0.534112 0.186718I
b = 0.668373 + 0.583240I
0.0415570 11.1730
u = 1.50349 + 0.33368I
a = 0.486081 + 0.616876I
b = 0.211945 1.000110I
10.3396 + 10.8681I 17.3574 5.7403I
u = 1.50349 + 0.33368I
a = 0.48833 1.44566I
b = 1.209730 + 0.620883I
10.3396 + 10.8681I 17.3574 5.7403I
15
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.50349 0.33368I
a = 0.486081 0.616876I
b = 0.211945 + 1.000110I
10.3396 10.8681I 17.3574 + 5.7403I
u = 1.50349 0.33368I
a = 0.48833 + 1.44566I
b = 1.209730 0.620883I
10.3396 10.8681I 17.3574 + 5.7403I
u = 1.54202 + 0.13644I
a = 0.652546 + 0.799251I
b = 0.387061 0.750740I
13.39880 + 1.20346I 19.4759 + 0.4307I
u = 1.54202 + 0.13644I
a = 0.422211 0.033636I
b = 1.353550 + 0.187496I
13.39880 + 1.20346I 19.4759 + 0.4307I
u = 1.54202 0.13644I
a = 0.652546 0.799251I
b = 0.387061 + 0.750740I
13.39880 1.20346I 19.4759 0.4307I
u = 1.54202 0.13644I
a = 0.422211 + 0.033636I
b = 1.353550 0.187496I
13.39880 1.20346I 19.4759 0.4307I
u = 0.245576 + 0.368193I
a = 0.463029 0.035853I
b = 1.146820 + 0.166231I
3.40144 + 0.93377I 14.2840 7.3829I
u = 0.245576 + 0.368193I
a = 0.33431 3.63181I
b = 0.974867 + 0.273032I
3.40144 + 0.93377I 14.2840 7.3829I
u = 0.245576 0.368193I
a = 0.463029 + 0.035853I
b = 1.146820 0.166231I
3.40144 0.93377I 14.2840 + 7.3829I
u = 0.245576 0.368193I
a = 0.33431 + 3.63181I
b = 0.974867 0.273032I
3.40144 0.93377I 14.2840 + 7.3829I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.54096 + 0.25161I
a = 0.413609 + 0.054874I
b = 1.375920 0.315214I
15.6238 6.2841I 21.2355 + 3.9797I
u = 1.54096 + 0.25161I
a = 0.37111 + 1.64681I
b = 1.130230 0.577888I
15.6238 6.2841I 21.2355 + 3.9797I
u = 1.54096 0.25161I
a = 0.413609 0.054874I
b = 1.375920 + 0.315214I
15.6238 + 6.2841I 21.2355 3.9797I
u = 1.54096 0.25161I
a = 0.37111 1.64681I
b = 1.130230 + 0.577888I
15.6238 + 6.2841I 21.2355 3.9797I
17
IV. I
u
4
= h−340u
15
a 770u
15
+ · · · + 249a + 651, 180u
15
a + 621u
15
+ · · ·
493a + 1534, u
16
+ u
15
+ · · · + 6u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
a
7.23404au
15
+ 16.3830u
15
+ ··· 5.29787a 13.8511
a
2
=
15.6596au
15
+ 34.0638u
15
+ ··· 18.0213a 28.8085
3.12766au
15
+ 9.10638u
15
+ ··· 3.61702a 2.68085
a
1
=
18.7872au
15
+ 43.1702u
15
+ ··· 21.6383a 31.4894
3.12766au
15
+ 9.10638u
15
+ ··· 3.61702a 2.68085
a
12
=
16.3830au
15
31.7234u
15
+ ··· + 13.8511a + 37.8298
1
a
6
=
3.04255u
15
+ 4.72340u
14
+ ··· 26.3830u + 10.1277
0.106383u
15
+ 1.19149u
14
+ ··· 7.04255u + 2.68085
a
9
=
0.680851u
15
0.574468u
14
+ ··· + 1.12766u + 2.95745
0.382979u
15
+ 1.51064u
14
+ ··· 8.44681u + 3.14894
a
8
=
0.297872u
15
+ 0.936170u
14
+ ··· 9.31915u + 6.10638
0.723404u
15
+ 2.29787u
14
+ ··· 12.5106u + 4.17021
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4
47
u
15
+
120
47
u
14
+
64
47
u
13
652
47
u
12
+
36
47
u
11
+ 28u
10
856
47
u
9
1120
47
u
8
+
1372
47
u
7
+
364
47
u
6
708
47
u
5
456
47
u
4
+
928
47
u
3
+
412
47
u
2
904
47
u
294
47
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
16
+ 9u
15
+ ··· 8u
2
+ 1)
2
c
2
, c
6
, c
7
c
12
(u
16
+ u
15
+ ··· 2u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(u
16
u
15
+ ··· 6u 1)
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y
16
5y
15
+ ··· 16y + 1)
2
c
2
, c
6
, c
7
c
12
(y
16
9y
15
+ ··· 8y
2
+ 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y
16
13y
15
+ ··· 24y + 1)
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.396638 + 0.883588I
a = 0.337682 + 1.319500I
b = 0.203747 0.848147I
4.20006 6.44354I 14.5716 + 5.2942I
u = 0.396638 + 0.883588I
a = 0.60336 1.62827I
b = 1.130780 + 0.529217I
4.20006 6.44354I 14.5716 + 5.2942I
u = 0.396638 0.883588I
a = 0.337682 1.319500I
b = 0.203747 + 0.848147I
4.20006 + 6.44354I 14.5716 5.2942I
u = 0.396638 0.883588I
a = 0.60336 + 1.62827I
b = 1.130780 0.529217I
4.20006 + 6.44354I 14.5716 5.2942I
u = 0.825972 + 0.646815I
a = 0.747776 + 1.028940I
b = 0.097535 0.616980I
5.53908 + 1.13123I 16.5848 0.5108I
u = 0.825972 + 0.646815I
a = 0.699291 0.157718I
b = 1.082580 + 0.348383I
5.53908 + 1.13123I 16.5848 0.5108I
u = 0.825972 0.646815I
a = 0.747776 1.028940I
b = 0.097535 + 0.616980I
5.53908 1.13123I 16.5848 + 0.5108I
u = 0.825972 0.646815I
a = 0.699291 + 0.157718I
b = 1.082580 0.348383I
5.53908 1.13123I 16.5848 + 0.5108I
u = 0.558144 + 0.766237I
a = 0.638881 + 0.698673I
b = 1.242710 0.322774I
8.73915 + 2.57849I 19.7229 3.5680I
u = 0.558144 + 0.766237I
a = 0.49735 + 2.23196I
b = 1.134620 0.424735I
8.73915 + 2.57849I 19.7229 3.5680I
21
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.558144 0.766237I
a = 0.638881 0.698673I
b = 1.242710 + 0.322774I
8.73915 2.57849I 19.7229 + 3.5680I
u = 0.558144 0.766237I
a = 0.49735 2.23196I
b = 1.134620 + 0.424735I
8.73915 2.57849I 19.7229 + 3.5680I
u = 0.858124
a = 0.109112 + 0.579205I
b = 0.685501 0.640105I
0.0770056 10.1360
u = 0.858124
a = 0.109112 0.579205I
b = 0.685501 + 0.640105I
0.0770056 10.1360
u = 1.15431
a = 2.11363
b = 1.14767
5.73470 12.1060
u = 1.15431
a = 2.18260
b = 0.684028
5.73470 12.1060
u = 1.396840 + 0.083857I
a = 1.161560 0.612877I
b = 1.082580 + 0.348383I
5.53908 + 1.13123I 16.5848 0.5108I
u = 1.396840 + 0.083857I
a = 0.343421 + 0.057531I
b = 0.097535 0.616980I
5.53908 + 1.13123I 16.5848 0.5108I
u = 1.396840 0.083857I
a = 1.161560 + 0.612877I
b = 1.082580 0.348383I
5.53908 1.13123I 16.5848 + 0.5108I
u = 1.396840 0.083857I
a = 0.343421 0.057531I
b = 0.097535 + 0.616980I
5.53908 1.13123I 16.5848 + 0.5108I
22
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.41338 + 0.10034I
a = 1.225930 0.338953I
b = 1.242710 + 0.322774I
8.73915 2.57849I 19.7229 + 3.5680I
u = 1.41338 + 0.10034I
a = 1.13766 1.49836I
b = 1.134620 + 0.424735I
8.73915 2.57849I 19.7229 + 3.5680I
u = 1.41338 0.10034I
a = 1.225930 + 0.338953I
b = 1.242710 0.322774I
8.73915 + 2.57849I 19.7229 3.5680I
u = 1.41338 0.10034I
a = 1.13766 + 1.49836I
b = 1.134620 0.424735I
8.73915 + 2.57849I 19.7229 3.5680I
u = 1.42845 + 0.22812I
a = 0.90855 + 1.25257I
b = 1.130780 0.529217I
4.20006 + 6.44354I 14.5716 5.2942I
u = 1.42845 + 0.22812I
a = 0.292432 0.232008I
b = 0.203747 + 0.848147I
4.20006 + 6.44354I 14.5716 5.2942I
u = 1.42845 0.22812I
a = 0.90855 1.25257I
b = 1.130780 + 0.529217I
4.20006 6.44354I 14.5716 + 5.2942I
u = 1.42845 0.22812I
a = 0.292432 + 0.232008I
b = 0.203747 0.848147I
4.20006 6.44354I 14.5716 + 5.2942I
u = 0.551002
a = 2.98683
b = 1.14767
5.73470 12.1060
u = 0.551002
a = 5.22255
b = 0.684028
5.73470 12.1060
23
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.240055
a = 1.98199 + 1.16965I
b = 0.685501 + 0.640105I
0.0770056 10.1360
u = 0.240055
a = 1.98199 1.16965I
b = 0.685501 0.640105I
0.0770056 10.1360
24
V. I
u
5
= h2a
3
+ 2a
2
+ b + 5a + 3, 2a
4
+ 2a
3
+ 5a
2
+ 4a + 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
1
a
4
=
1
1
a
11
=
1
0
a
5
=
0
1
a
7
=
a
2a
3
2a
2
5a 3
a
2
=
a
4a
3
2a
2
8a 4
a
1
=
4a
3
2a
2
9a 4
4a
3
2a
2
8a 4
a
12
=
2a
3
4a 1
4a
3
2a
2
8a 2
a
6
=
1
2a
3
+ 5a + 1
a
9
=
1
2a
3
5a
a
8
=
1
2a
3
5a 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16a
3
+ 8a
2
+ 32a 4
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
2
u + 2)
2
c
2
, c
6
, c
7
c
12
u
4
u
2
+ 2
c
3
, c
4
, c
8
c
9
(u 1)
4
c
5
, c
10
(u + 1)
4
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y
2
+ 3y + 4)
2
c
2
, c
6
, c
7
c
12
(y
2
y + 2)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y 1)
4
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.04738 + 1.47756I
b = 0.978318 0.676097I
2.46740 + 5.33349I 18.0000 5.2915I
u = 1.00000
a = 0.04738 1.47756I
b = 0.978318 + 0.676097I
2.46740 5.33349I 18.0000 + 5.2915I
u = 1.00000
a = 0.452616 + 0.154683I
b = 0.978318 0.676097I
2.46740 5.33349I 18.0000 + 5.2915I
u = 1.00000
a = 0.452616 0.154683I
b = 0.978318 + 0.676097I
2.46740 + 5.33349I 18.0000 5.2915I
28
VI. I
u
6
= hu
3
+ b u 1, u
11
+ 4u
9
+ · · · + 2a + 1, u
12
u
11
+ · · · + 2u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
1
2
u
11
2u
9
+ ··· +
1
2
u
1
2
u
3
+ u + 1
a
2
=
1
2
u
11
+ u
10
+ ···
1
2
u +
3
2
u
6
+ 2u
4
+ 2u
3
u
2
2u 1
a
1
=
1
2
u
11
+ u
10
+ ···
5
2
u +
1
2
u
6
+ 2u
4
+ 2u
3
u
2
2u 1
a
12
=
1
2
u
11
u
9
+ ···
11
2
u
5
2
u
11
4u
9
3u
8
+ 6u
7
+ 9u
6
2u
5
8u
4
4u
3
+ u
2
+ 3u
a
6
=
u
10
u
9
4u
8
+ u
7
+ 9u
6
+ 3u
5
10u
4
7u
3
+ 3u
2
+ 4u + 2
u
9
3u
7
3u
6
+ 3u
5
+ 6u
4
+ u
3
3u
2
2u
a
9
=
2u
11
+ 2u
10
+ 8u
9
u
8
18u
7
9u
6
+ 17u
5
+ 17u
4
7u
2
8u 2
u
11
2u
10
4u
9
+ 4u
8
+ 12u
7
16u
5
8u
4
+ 5u
3
+ 6u
2
+ 5u
a
8
=
u
11
+ 4u
9
+ 3u
8
6u
7
9u
6
+ u
5
+ 9u
4
+ 6u
3
u
2
5u 2
u
10
u
9
+ 4u
8
+ 6u
7
2u
6
11u
5
7u
4
+ 3u
3
+ 7u
2
+ 5u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
11
+ 2u
10
18u
9
20u
8
+ 24u
7
+ 52u
6
+ 2u
5
42u
4
28u
3
+ 2u
2
+ 12u 6
29
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
6
+ 2u
5
+ 3u
4
+ u
3
+ u
2
u + 1)
2
c
2
, c
6
, c
7
c
12
(u
6
u
4
u
3
+ u
2
+ u + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
12
+ u
11
4u
10
+ 9u
8
6u
7
7u
6
+ 10u
5
3u
4
3u
3
+ 5u
2
2u + 1
30
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y
6
+ 2y
5
+ 7y
4
+ 11y
3
+ 9y
2
+ y + 1)
2
c
2
, c
6
, c
7
c
12
(y
6
2y
5
+ 3y
4
y
3
+ y
2
+ y + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
12
9y
11
+ ··· + 6y + 1
31
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.048730 + 0.280811I
a = 0.365804 + 1.070810I
b = 0.856601 0.623578I
0.56604 + 4.89103I 11.87827 6.59162I
u = 1.048730 0.280811I
a = 0.365804 1.070810I
b = 0.856601 + 0.623578I
0.56604 4.89103I 11.87827 + 6.59162I
u = 0.873118 + 0.859069I
a = 0.405852 + 0.292449I
b = 1.140590 0.471635I
8.39843 5.32947I 19.4826 + 4.5439I
u = 0.873118 0.859069I
a = 0.405852 0.292449I
b = 1.140590 + 0.471635I
8.39843 + 5.32947I 19.4826 4.5439I
u = 0.331855 + 0.650057I
a = 0.44987 1.64991I
b = 0.283992 + 0.709987I
1.72760 + 1.71504I 10.63910 1.32670I
u = 0.331855 0.650057I
a = 0.44987 + 1.64991I
b = 0.283992 0.709987I
1.72760 1.71504I 10.63910 + 1.32670I
u = 1.286280 + 0.180616I
a = 0.348442 + 0.274282I
b = 0.283992 0.709987I
1.72760 1.71504I 10.63910 + 1.32670I
u = 1.286280 0.180616I
a = 0.348442 0.274282I
b = 0.283992 + 0.709987I
1.72760 + 1.71504I 10.63910 1.32670I
u = 0.081560 + 0.504924I
a = 1.45936 0.10824I
b = 0.856601 + 0.623578I
0.56604 4.89103I 11.87827 + 6.59162I
u = 0.081560 0.504924I
a = 1.45936 + 0.10824I
b = 0.856601 0.623578I
0.56604 + 4.89103I 11.87827 6.59162I
32
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.54898 + 0.07617I
a = 1.013980 + 0.488782I
b = 1.140590 0.471635I
8.39843 5.32947I 19.4826 + 4.5439I
u = 1.54898 0.07617I
a = 1.013980 0.488782I
b = 1.140590 + 0.471635I
8.39843 + 5.32947I 19.4826 4.5439I
33
VII. I
u
7
= hb 1, 6a + u 3, u
2
3i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
3
a
11
=
u
2u
a
5
=
2
3
a
7
=
1
6
u +
1
2
1
a
2
=
1
6
u +
1
2
1
a
1
=
1
6
u
1
2
1
a
12
=
5
6
u
1
2
2u 1
a
6
=
1
0
a
9
=
u
u
a
8
=
u
2u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
34
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
(u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
3
c
6
, c
12
(u + 1)
2
35
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y 3)
2
36
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.73205
a = 0.211325
b = 1.00000
16.4493 24.0000
u = 1.73205
a = 0.788675
b = 1.00000
16.4493 24.0000
37
VIII. I
u
8
= h−2au + 4b + 2a u + 5, 4a
2
+ 4a 7, u
2
2u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
2u 1
a
11
=
u
2u + 2
a
5
=
2u + 2
1
a
7
=
a
1
2
au
1
2
a +
1
4
u
5
4
a
2
=
1
4
au +
3
4
a
7
8
u +
15
8
au a +
1
2
u
3
2
a
1
=
5
4
au
1
4
a
3
8
u +
3
8
au a +
1
2
u
3
2
a
12
=
3
4
au +
1
4
a +
3
8
u
11
8
2u + 1
a
6
=
2u 3
au + a
1
2
u +
1
2
a
9
=
3u + 4
au a +
3
2
u
1
2
a
8
=
u + 2
au a +
5
2
u
5
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
38
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
4
c
6
, c
8
, c
9
c
11
, c
12
(u 1)
4
c
2
, c
5
, c
7
c
10
(u + 1)
4
39
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
(y 1)
4
40
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.914214
b = 1.00000
6.57974 24.0000
u = 1.00000
a = 0.914214
b = 1.00000
6.57974 24.0000
u = 1.00000
a = 1.91421
b = 1.00000
6.57974 24.0000
u = 1.00000
a = 1.91421
b = 1.00000
6.57974 24.0000
41
IX. I
u
9
= hb, a + 1, u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
1
a
4
=
1
1
a
11
=
1
0
a
5
=
0
1
a
7
=
1
0
a
2
=
1
0
a
1
=
1
0
a
12
=
1
0
a
6
=
1
0
a
9
=
1
1
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
42
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
u
c
3
, c
4
, c
8
c
9
u + 1
c
5
, c
10
u 1
43
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y 1
44
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
3.28987 12.0000
45
X. I
u
10
= h2a
3
+ 4a
2
+ b + 6a + 3, 2a
4
+ 4a
3
+ 6a
2
+ 4a + 1, u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
1
a
4
=
1
1
a
11
=
1
0
a
5
=
0
1
a
7
=
a
2a
3
4a
2
6a 3
a
2
=
a
4a
3
6a
2
8a 3
a
1
=
4a
3
6a
2
9a 3
4a
3
6a
2
8a 3
a
12
=
2a
3
4a
2
5a 2
1
a
6
=
1
2a
2
2a 2
a
9
=
1
2a
2
2a 3
a
8
=
1
2a
2
2a 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16
46
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
(u
2
+ 1)
2
c
2
, c
6
, c
7
c
12
u
4
+ 1
c
3
, c
4
, c
8
c
9
(u + 1)
4
c
5
, c
10
(u 1)
4
47
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
(y + 1)
4
c
2
, c
6
, c
7
c
12
(y
2
+ 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y 1)
4
48
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.500000 + 1.207110I
b = 0.707107 0.707107I
1.64493 16.0000
u = 1.00000
a = 0.500000 1.207110I
b = 0.707107 + 0.707107I
1.64493 16.0000
u = 1.00000
a = 0.500000 + 0.207107I
b = 0.707107 0.707107I
1.64493 16.0000
u = 1.00000
a = 0.500000 0.207107I
b = 0.707107 + 0.707107I
1.64493 16.0000
49
XI. I
u
11
= hb + 1, u 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
1
a
4
=
1
1
a
11
=
1
0
a
5
=
0
1
a
7
=
a
1
a
2
=
a + 1
1
a
1
=
a
1
a
12
=
a 1
1
a
6
=
1
0
a
9
=
1
1
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 24
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
50
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
11
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
6.57974 24.0000
51
XII. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
1
0
a
4
=
1
0
a
11
=
1
0
a
5
=
1
0
a
7
=
0
1
a
2
=
1
1
a
1
=
0
1
a
12
=
1
1
a
6
=
1
0
a
9
=
1
0
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
52
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
12
u + 1
53
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
54
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
55
XIII. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
u(u 1)
7
(u
2
+ 1)
2
(u
2
u + 2)
2
(u
4
+ 3u
3
+ 5u
2
+ 3u + 1)
2
· ((u
6
+ 2u
5
+ 3u
4
+ u
3
+ u
2
u + 1)
2
)(u
16
+ 7u
15
+ ··· + 44u + 4)
· ((u
16
+ 9u
15
+ ··· 8u
2
+ 1)
2
)(u
24
+ 13u
23
+ ··· + 280u + 121)
c
2
, c
7
u(u 1)
3
(u + 1)
4
(u
4
+ 1)(u
4
u
2
+ 2)(u
4
+ u
3
u
2
u + 1)
2
· ((u
6
u
4
u
3
+ u
2
+ u + 1)
2
)(u
16
3u
15
+ ··· + 2u + 2)
· ((u
16
+ u
15
+ ··· 2u 1)
2
)(u
24
3u
23
+ ··· 40u + 11)
c
3
, c
4
, c
8
c
9
u(u 1)
8
(u + 1)
5
(u
2
3)
· (u
8
+ 2u
7
2u
6
4u
5
+ 3u
4
+ u
3
5u
2
+ 4u + 7)
· (u
12
u
11
7u
10
+ 6u
9
+ 18u
8
11u
7
19u
6
+ 2u
5
+ 6u
4
+ 8u
3
+ 1)
2
· (u
12
+ u
11
4u
10
+ 9u
8
6u
7
7u
6
+ 10u
5
3u
4
3u
3
+ 5u
2
2u + 1)
· ((u
16
u
15
+ ··· 6u 1)
2
)(u
16
+ 3u
15
+ ··· + 13u
2
2)
c
5
, c
10
u(u 1)
5
(u + 1)
8
(u
2
3)
· (u
8
+ 2u
7
2u
6
4u
5
+ 3u
4
+ u
3
5u
2
+ 4u + 7)
· (u
12
u
11
7u
10
+ 6u
9
+ 18u
8
11u
7
19u
6
+ 2u
5
+ 6u
4
+ 8u
3
+ 1)
2
· (u
12
+ u
11
4u
10
+ 9u
8
6u
7
7u
6
+ 10u
5
3u
4
3u
3
+ 5u
2
2u + 1)
· ((u
16
u
15
+ ··· 6u 1)
2
)(u
16
+ 3u
15
+ ··· + 13u
2
2)
c
6
, c
12
u(u 1)
4
(u + 1)
3
(u
4
+ 1)(u
4
u
2
+ 2)(u
4
+ u
3
u
2
u + 1)
2
· ((u
6
u
4
u
3
+ u
2
+ u + 1)
2
)(u
16
3u
15
+ ··· + 2u + 2)
· ((u
16
+ u
15
+ ··· 2u 1)
2
)(u
24
3u
23
+ ··· 40u + 11)
56
XIV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
y(y 1)
7
(y + 1)
4
(y
2
+ 3y + 4)
2
(y
4
+ y
3
+ 9y
2
+ y + 1)
2
· ((y
6
+ 2y
5
+ ··· + y + 1)
2
)(y
16
5y
15
+ ··· 16y + 1)
2
· (y
16
+ 9y
15
+ ··· 912y + 16)(y
24
5y
23
+ ··· + 60024y + 14641)
c
2
, c
6
, c
7
c
12
y(y 1)
7
(y
2
+ 1)
2
(y
2
y + 2)
2
(y
4
3y
3
+ 5y
2
3y + 1)
2
· ((y
6
2y
5
+ 3y
4
y
3
+ y
2
+ y + 1)
2
)(y
16
9y
15
+ ··· 8y
2
+ 1)
2
· (y
16
7y
15
+ ··· 44y + 4)(y
24
13y
23
+ ··· 280y + 121)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y(y 3)
2
(y 1)
13
· (y
8
8y
7
+ 26y
6
42y
5
+ 35y
4
27y
3
+ 59y
2
86y + 49)
· ((y
12
15y
11
+ ··· + 12y
2
+ 1)
2
)(y
12
9y
11
+ ··· + 6y + 1)
· (y
16
21y
15
+ ··· 52y + 4)(y
16
13y
15
+ ··· 24y + 1)
2
57