12a
0648
(K12a
0648
)
A knot diagram
1
Linearized knot diagam
3 7 10 11 9 2 12 6 5 4 1 8
Solving Sequence
3,10
4 11
5,7
2 1 12 6 9 8
c
3
c
10
c
4
c
2
c
1
c
11
c
6
c
9
c
8
c
5
, c
7
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
33
+ u
32
+ ··· + b 1, u
33
u
32
+ ··· + 2a + u, u
34
3u
33
+ ··· + 7u
2
2i
I
u
2
= h40u
23
a + 70u
23
+ ··· + 34a + 57, 2u
23
a + u
23
+ ··· + a
2
+ 2, u
24
+ u
23
+ ··· + 2u
2
+ 1i
I
u
3
= hb 1, 2u
3
+ 3u
2
+ 3a + 3u 6, u
4
3u
2
+ 3i
I
u
4
= hb + 1, u
2
+ a u, u
4
u
2
1i
I
v
1
= ha, b 1, v + 1i
* 5 irreducible components of dim
C
= 0, with total 91 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h−u
33
+u
32
+· · ·+b1, u
33
u
32
+· · ·+2a+u, u
34
3u
33
+· · ·+7u
2
2i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
1
2
u
33
+
1
2
u
32
+ ··· + 2u
2
1
2
u
u
33
u
32
+ ··· + u + 1
a
2
=
7
2
u
33
13
2
u
32
+ ··· +
7
2
u + 6
u
33
2u
32
+ ··· + 2u + 1
a
1
=
9
2
u
33
17
2
u
32
+ ··· +
11
2
u + 7
u
33
2u
32
+ ··· + 2u + 1
a
12
=
7
2
u
33
13
2
u
32
+ ··· +
5
2
u + 5
u
33
2u
32
+ ··· + 3u + 1
a
6
=
u
8
+ 3u
6
3u
4
+ 1
u
10
+ 4u
8
5u
6
+ 3u
2
a
9
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
8
=
u
11
4u
9
+ 6u
7
2u
5
3u
3
+ 2u
u
13
5u
11
+ 9u
9
4u
7
6u
5
+ 5u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 16u
33
30u
32
176u
31
+ 310u
30
+ 906u
29
1386u
28
2824u
27
+
3246u
26
+ 5702u
25
3296u
24
7040u
23
2332u
22
+ 3058u
21
+ 10882u
20
+ 6024u
19
10740u
18
12104u
17
2002u
16
+ 6950u
15
+ 11788u
14
+ 4152u
13
6006u
12
7292u
11
3698u
10
+ 1314u
9
+ 3622u
8
+ 2284u
7
+ 444u
6
662u
5
734u
4
368u
3
88u
2
+ 8u + 12
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
34
+ 13u
33
+ ··· + 18u + 1
c
2
, c
6
, c
7
c
12
u
34
u
33
+ ··· 2u 1
c
3
, c
4
, c
10
u
34
+ 3u
33
+ ··· + 7u
2
2
c
5
, c
8
, c
9
u
34
9u
33
+ ··· 104u + 14
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
34
+ 27y
33
+ ··· 46y + 1
c
2
, c
6
, c
7
c
12
y
34
13y
33
+ ··· 18y + 1
c
3
, c
4
, c
10
y
34
27y
33
+ ··· 28y + 4
c
5
, c
8
, c
9
y
34
+ 33y
33
+ ··· 540y + 196
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.013520 + 0.242521I
a = 0.355644 + 1.026690I
b = 0.890943 0.630816I
0.60916 + 4.94810I 11.40571 6.58430I
u = 1.013520 0.242521I
a = 0.355644 1.026690I
b = 0.890943 + 0.630816I
0.60916 4.94810I 11.40571 + 6.58430I
u = 0.019993 + 0.886536I
a = 0.99279 1.72000I
b = 0.620427 + 0.888173I
10.23300 0.57498I 4.93221 + 2.01552I
u = 0.019993 0.886536I
a = 0.99279 + 1.72000I
b = 0.620427 0.888173I
10.23300 + 0.57498I 4.93221 2.01552I
u = 0.068695 + 0.879558I
a = 0.61168 + 2.14998I
b = 1.162480 0.677594I
6.70898 + 11.31000I 9.03751 7.13336I
u = 0.068695 0.879558I
a = 0.61168 2.14998I
b = 1.162480 + 0.677594I
6.70898 11.31000I 9.03751 + 7.13336I
u = 1.207750 + 0.187996I
a = 0.308967 + 0.091247I
b = 0.324451 0.579872I
1.55132 1.46622I 9.64070 + 0.44653I
u = 1.207750 0.187996I
a = 0.308967 0.091247I
b = 0.324451 + 0.579872I
1.55132 + 1.46622I 9.64070 0.44653I
u = 1.211280 + 0.430207I
a = 0.282844 + 0.666214I
b = 1.145270 0.686416I
3.19057 6.62584I 12.00000 + 3.79448I
u = 1.211280 0.430207I
a = 0.282844 0.666214I
b = 1.145270 + 0.686416I
3.19057 + 6.62584I 12.00000 3.79448I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.086828 + 0.686695I
a = 0.675634 + 0.571144I
b = 0.750792 0.491169I
2.05021 1.49541I 7.38318 + 3.42302I
u = 0.086828 0.686695I
a = 0.675634 0.571144I
b = 0.750792 + 0.491169I
2.05021 + 1.49541I 7.38318 3.42302I
u = 1.31718
a = 1.28254
b = 0.594449
5.52603 16.4440
u = 1.281510 + 0.305200I
a = 0.845662 + 0.733598I
b = 0.682471 0.253099I
1.94338 + 5.09853I 12.0000 8.2909I
u = 1.281510 0.305200I
a = 0.845662 0.733598I
b = 0.682471 + 0.253099I
1.94338 5.09853I 12.0000 + 8.2909I
u = 1.260670 + 0.425063I
a = 0.21847 1.46519I
b = 0.653525 + 0.878185I
6.38980 + 5.26542I 8.46055 5.30635I
u = 1.260670 0.425063I
a = 0.21847 + 1.46519I
b = 0.653525 0.878185I
6.38980 5.26542I 8.46055 + 5.30635I
u = 0.007042 + 0.669070I
a = 0.407696 + 0.768480I
b = 0.636123 0.421028I
2.05008 1.46908I 6.49670 + 4.60453I
u = 0.007042 0.669070I
a = 0.407696 0.768480I
b = 0.636123 + 0.421028I
2.05008 + 1.46908I 6.49670 4.60453I
u = 0.584426 + 0.322111I
a = 0.0940661 0.0123771I
b = 0.998997 + 0.590488I
1.17138 4.75212I 13.33145 + 3.31691I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.584426 0.322111I
a = 0.0940661 + 0.0123771I
b = 0.998997 0.590488I
1.17138 + 4.75212I 13.33145 3.31691I
u = 0.331538 + 0.561990I
a = 0.42743 2.05569I
b = 1.071630 + 0.613723I
0.24987 + 8.13095I 11.3800 9.4182I
u = 0.331538 0.561990I
a = 0.42743 + 2.05569I
b = 1.071630 0.613723I
0.24987 8.13095I 11.3800 + 9.4182I
u = 1.312450 + 0.320860I
a = 0.246500 0.701851I
b = 0.854983 0.402484I
2.29444 2.26511I 13.59499 1.93125I
u = 1.312450 0.320860I
a = 0.246500 + 0.701851I
b = 0.854983 + 0.402484I
2.29444 + 2.26511I 13.59499 + 1.93125I
u = 1.292790 + 0.415380I
a = 1.050280 0.475483I
b = 0.587435 + 0.891176I
6.14677 4.08463I 8.53251 + 0.I
u = 1.292790 0.415380I
a = 1.050280 + 0.475483I
b = 0.587435 0.891176I
6.14677 + 4.08463I 8.53251 + 0.I
u = 1.365780 + 0.061291I
a = 1.52752 + 0.49479I
b = 1.016200 + 0.501862I
7.06900 + 3.73055I 18.8014 4.5700I
u = 1.365780 0.061291I
a = 1.52752 0.49479I
b = 1.016200 0.501862I
7.06900 3.73055I 18.8014 + 4.5700I
u = 1.356100 + 0.180668I
a = 1.87588 1.22676I
b = 1.113880 + 0.583314I
5.54762 10.69250I 17.2417 + 9.2859I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.356100 0.180668I
a = 1.87588 + 1.22676I
b = 1.113880 0.583314I
5.54762 + 10.69250I 17.2417 9.2859I
u = 1.325120 + 0.401209I
a = 0.95387 + 2.20135I
b = 1.173850 0.667200I
2.3480 15.9016I 12.0000 + 9.6149I
u = 1.325120 0.401209I
a = 0.95387 2.20135I
b = 1.173850 + 0.667200I
2.3480 + 15.9016I 12.0000 9.6149I
u = 0.328225
a = 0.695567
b = 0.366829
0.582542 16.9630
8
II. I
u
2
=
h40u
23
a+70u
23
+· · ·+34a+ 57, 2u
23
a+u
23
+· · ·+a
2
+2, u
24
+u
23
+· · ·+2u
2
+1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
a
20u
23
a 35u
23
+ ··· 17a
57
2
a
2
=
35u
23
a
121
2
u
23
+ ···
57
2
a 50
23
2
u
23
a 21u
23
+ ··· 9a 18
a
1
=
93
2
u
23
a
163
2
u
23
+ ···
75
2
a 68
23
2
u
23
a 21u
23
+ ··· 9a 18
a
12
=
35u
23
a +
121
2
u
23
+ ··· +
57
2
a + 51
1
a
6
=
u
8
+ 3u
6
3u
4
+ 1
u
10
+ 4u
8
5u
6
+ 3u
2
a
9
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
8
=
u
11
4u
9
+ 6u
7
2u
5
3u
3
+ 2u
u
13
5u
11
+ 9u
9
4u
7
6u
5
+ 5u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
21
32u
19
+ 4u
18
+ 108u
17
28u
16
180u
15
+ 80u
14
+ 104u
13
104u
12
+ 120u
11
+
24u
10
216u
9
+ 88u
8
+ 56u
7
76u
6
+ 80u
5
12u
4
36u
3
+ 24u
2
8u 10
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
48
+ 25u
47
+ ··· + 1100u + 49
c
2
, c
6
, c
7
c
12
u
48
u
47
+ ··· + 20u 7
c
3
, c
4
, c
10
(u
24
u
23
+ ··· + 2u
2
+ 1)
2
c
5
, c
8
, c
9
(u
24
+ 3u
23
+ ··· + 8u + 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
48
5y
47
+ ··· 196288y + 2401
c
2
, c
6
, c
7
c
12
y
48
25y
47
+ ··· 1100y + 49
c
3
, c
4
, c
10
(y
24
19y
23
+ ··· + 4y + 1)
2
c
5
, c
8
, c
9
(y
24
+ 25y
23
+ ··· 20y + 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.047552 + 0.882738I
a = 0.93385 + 1.58747I
b = 0.435071 0.953033I
8.92830 5.35992I 6.31714 + 3.17670I
u = 0.047552 + 0.882738I
a = 0.77910 2.11672I
b = 1.047250 + 0.722390I
8.92830 5.35992I 6.31714 + 3.17670I
u = 0.047552 0.882738I
a = 0.93385 1.58747I
b = 0.435071 + 0.953033I
8.92830 + 5.35992I 6.31714 3.17670I
u = 0.047552 0.882738I
a = 0.77910 + 2.11672I
b = 1.047250 0.722390I
8.92830 + 5.35992I 6.31714 3.17670I
u = 0.023946 + 0.850260I
a = 0.854901 + 0.065619I
b = 1.327570 0.116085I
2.61833 + 2.14805I 9.50752 3.24690I
u = 0.023946 + 0.850260I
a = 1.26227 + 2.30944I
b = 0.859183 0.533480I
2.61833 + 2.14805I 9.50752 3.24690I
u = 0.023946 0.850260I
a = 0.854901 0.065619I
b = 1.327570 + 0.116085I
2.61833 2.14805I 9.50752 + 3.24690I
u = 0.023946 0.850260I
a = 1.26227 2.30944I
b = 0.859183 + 0.533480I
2.61833 2.14805I 9.50752 + 3.24690I
u = 0.832524
a = 0.131221 + 0.555408I
b = 0.682430 0.630183I
0.0807297 10.4750
u = 0.832524
a = 0.131221 0.555408I
b = 0.682430 + 0.630183I
0.0807297 10.4750
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.20293
a = 1.73587
b = 1.15462
5.82330 13.8910
u = 1.20293
a = 1.78357
b = 0.588840
5.82330 13.8910
u = 1.293390 + 0.128068I
a = 1.91095 + 0.30080I
b = 1.204290 + 0.245726I
7.93370 2.66216I 20.0752 + 4.8307I
u = 1.293390 + 0.128068I
a = 1.66650 2.23253I
b = 1.051290 + 0.371289I
7.93370 2.66216I 20.0752 + 4.8307I
u = 1.293390 0.128068I
a = 1.91095 0.30080I
b = 1.204290 0.245726I
7.93370 + 2.66216I 20.0752 4.8307I
u = 1.293390 0.128068I
a = 1.66650 + 2.23253I
b = 1.051290 0.371289I
7.93370 + 2.66216I 20.0752 4.8307I
u = 1.234200 + 0.427679I
a = 0.533072 0.692246I
b = 1.021630 + 0.732505I
5.26485 + 0.67393I 9.45928 + 0.18139I
u = 1.234200 + 0.427679I
a = 0.175482 + 1.183140I
b = 0.464333 0.941817I
5.26485 + 0.67393I 9.45928 + 0.18139I
u = 1.234200 0.427679I
a = 0.533072 + 0.692246I
b = 1.021630 0.732505I
5.26485 0.67393I 9.45928 0.18139I
u = 1.234200 0.427679I
a = 0.175482 1.183140I
b = 0.464333 + 0.941817I
5.26485 0.67393I 9.45928 0.18139I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.691969
a = 0.274874 + 0.414868I
b = 0.670746 0.591354I
0.0763260 11.1940
u = 0.691969
a = 0.274874 0.414868I
b = 0.670746 + 0.591354I
0.0763260 11.1940
u = 1.30821
a = 1.11879
b = 0.332716
5.51913 16.7540
u = 1.30821
a = 1.43447
b = 0.791230
5.51913 16.7540
u = 1.252440 + 0.391136I
a = 0.449607 + 1.024250I
b = 1.319610 0.087540I
1.18429 + 2.30642I 12.92509 0.09891I
u = 1.252440 + 0.391136I
a = 1.03328 + 1.08909I
b = 0.812135 0.524983I
1.18429 + 2.30642I 12.92509 0.09891I
u = 1.252440 0.391136I
a = 0.449607 1.024250I
b = 1.319610 + 0.087540I
1.18429 2.30642I 12.92509 + 0.09891I
u = 1.252440 0.391136I
a = 1.03328 1.08909I
b = 0.812135 + 0.524983I
1.18429 2.30642I 12.92509 + 0.09891I
u = 1.317160 + 0.196052I
a = 0.353419 + 0.369938I
b = 0.324849 + 0.740601I
3.30467 + 5.67994I 14.0544 5.8984I
u = 1.317160 + 0.196052I
a = 1.52240 + 1.35145I
b = 1.002150 0.525239I
3.30467 + 5.67994I 14.0544 5.8984I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.317160 0.196052I
a = 0.353419 0.369938I
b = 0.324849 0.740601I
3.30467 5.67994I 14.0544 + 5.8984I
u = 1.317160 0.196052I
a = 1.52240 1.35145I
b = 1.002150 + 0.525239I
3.30467 5.67994I 14.0544 + 5.8984I
u = 1.291330 + 0.388939I
a = 0.364047 0.995039I
b = 1.331980 0.141793I
1.47874 6.59660I 13.7438 + 6.1593I
u = 1.291330 + 0.388939I
a = 0.10197 + 2.46547I
b = 0.898920 0.537221I
1.47874 6.59660I 13.7438 + 6.1593I
u = 1.291330 0.388939I
a = 0.364047 + 0.995039I
b = 1.331980 + 0.141793I
1.47874 + 6.59660I 13.7438 6.1593I
u = 1.291330 0.388939I
a = 0.10197 2.46547I
b = 0.898920 + 0.537221I
1.47874 + 6.59660I 13.7438 6.1593I
u = 1.311950 + 0.407404I
a = 1.135480 + 0.399929I
b = 0.408439 0.956875I
4.68376 + 9.98187I 10.26847 5.91019I
u = 1.311950 + 0.407404I
a = 0.71217 2.12659I
b = 1.066530 + 0.709104I
4.68376 + 9.98187I 10.26847 5.91019I
u = 1.311950 0.407404I
a = 1.135480 0.399929I
b = 0.408439 + 0.956875I
4.68376 9.98187I 10.26847 + 5.91019I
u = 1.311950 0.407404I
a = 0.71217 + 2.12659I
b = 1.066530 0.709104I
4.68376 9.98187I 10.26847 + 5.91019I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.240904 + 0.566295I
a = 0.923905 0.605650I
b = 0.456331 + 0.723385I
1.52510 3.00632I 7.78842 + 5.20782I
u = 0.240904 + 0.566295I
a = 0.07657 + 2.00277I
b = 0.904982 0.580179I
1.52510 3.00632I 7.78842 + 5.20782I
u = 0.240904 0.566295I
a = 0.923905 + 0.605650I
b = 0.456331 0.723385I
1.52510 + 3.00632I 7.78842 5.20782I
u = 0.240904 0.566295I
a = 0.07657 2.00277I
b = 0.904982 + 0.580179I
1.52510 + 3.00632I 7.78842 5.20782I
u = 0.208545 + 0.356460I
a = 0.503731 + 0.170872I
b = 1.145940 + 0.154341I
3.36920 + 0.91014I 13.7041 7.5969I
u = 0.208545 + 0.356460I
a = 0.44912 3.83789I
b = 0.960477 + 0.265141I
3.36920 + 0.91014I 13.7041 7.5969I
u = 0.208545 0.356460I
a = 0.503731 0.170872I
b = 1.145940 0.154341I
3.36920 0.91014I 13.7041 + 7.5969I
u = 0.208545 0.356460I
a = 0.44912 + 3.83789I
b = 0.960477 0.265141I
3.36920 0.91014I 13.7041 + 7.5969I
16
III. I
u
3
= hb 1, 2u
3
+ 3u
2
+ 3a + 3u 6, u
4
3u
2
+ 3i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
2
+ 3
a
7
=
2
3
u
3
u
2
u + 2
1
a
2
=
2
3
u
3
+ u
2
+ u 1
1
a
1
=
2
3
u
3
+ u
2
+ u 2
1
a
12
=
2
3
u
3
+ u
2
2
u
3
+ u 1
a
6
=
1
0
a
9
=
u
3
2u
u
3
+ u
a
8
=
u
u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
24
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
(u 1)
4
c
3
, c
4
, c
10
u
4
3u
2
+ 3
c
5
, c
8
, c
9
u
4
+ 3u
2
+ 3
c
6
, c
12
(u + 1)
4
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
10
(y
2
3y + 3)
2
c
5
, c
8
, c
9
(y
2
+ 3y + 3)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.271230 + 0.340625I
a = 0.303340 0.132080I
b = 1.00000
3.28987 4.05977I 18.0000 + 3.4641I
u = 1.271230 0.340625I
a = 0.303340 + 0.132080I
b = 1.00000
3.28987 + 4.05977I 18.0000 3.4641I
u = 1.271230 + 0.340625I
a = 0.69666 + 1.59997I
b = 1.00000
3.28987 + 4.05977I 18.0000 3.4641I
u = 1.271230 0.340625I
a = 0.69666 1.59997I
b = 1.00000
3.28987 4.05977I 18.0000 + 3.4641I
20
IV. I
u
4
= hb + 1, u
2
+ a u, u
4
u
2
1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
11
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
2
1
a
7
=
u
2
+ u
1
a
2
=
u
2
+ u + 1
1
a
1
=
u
2
+ u
1
a
12
=
u
2
u
3
+ u 1
a
6
=
1
0
a
9
=
u
3
+ 2u
u
3
u
a
8
=
u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
16
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
11
c
12
(u 1)
4
c
2
, c
7
(u + 1)
4
c
3
, c
4
, c
10
u
4
u
2
1
c
5
, c
8
, c
9
u
4
+ u
2
1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
4
c
3
, c
4
, c
10
(y
2
y 1)
2
c
5
, c
8
, c
9
(y
2
+ y 1)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.786151I
a = 0.618034 + 0.786151I
b = 1.00000
0.657974 13.5280
u = 0.786151I
a = 0.618034 0.786151I
b = 1.00000
0.657974 13.5280
u = 1.27202
a = 0.346014
b = 1.00000
7.23771 22.4720
u = 1.27202
a = 2.89005
b = 1.00000
7.23771 22.4720
24
V. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
1
0
a
4
=
1
0
a
11
=
1
0
a
5
=
1
0
a
7
=
0
1
a
2
=
1
1
a
1
=
0
1
a
12
=
1
1
a
6
=
1
0
a
9
=
1
0
a
8
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
12
u + 1
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
28
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
((u 1)
9
)(u
34
+ 13u
33
+ ··· + 18u + 1)(u
48
+ 25u
47
+ ··· + 1100u + 49)
c
2
, c
7
((u 1)
5
)(u + 1)
4
(u
34
u
33
+ ··· 2u 1)(u
48
u
47
+ ··· + 20u 7)
c
3
, c
4
, c
10
u(u
4
3u
2
+ 3)(u
4
u
2
1)(u
24
u
23
+ ··· + 2u
2
+ 1)
2
· (u
34
+ 3u
33
+ ··· + 7u
2
2)
c
5
, c
8
, c
9
u(u
4
+ u
2
1)(u
4
+ 3u
2
+ 3)(u
24
+ 3u
23
+ ··· + 8u + 1)
2
· (u
34
9u
33
+ ··· 104u + 14)
c
6
, c
12
((u 1)
4
)(u + 1)
5
(u
34
u
33
+ ··· 2u 1)(u
48
u
47
+ ··· + 20u 7)
29
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
((y 1)
9
)(y
34
+ 27y
33
+ ··· 46y + 1)
· (y
48
5y
47
+ ··· 196288y + 2401)
c
2
, c
6
, c
7
c
12
((y 1)
9
)(y
34
13y
33
+ ··· 18y + 1)(y
48
25y
47
+ ··· 1100y + 49)
c
3
, c
4
, c
10
y(y
2
3y + 3)
2
(y
2
y 1)
2
(y
24
19y
23
+ ··· + 4y + 1)
2
· (y
34
27y
33
+ ··· 28y + 4)
c
5
, c
8
, c
9
y(y
2
+ y 1)
2
(y
2
+ 3y + 3)
2
(y
24
+ 25y
23
+ ··· 20y + 1)
2
· (y
34
+ 33y
33
+ ··· 540y + 196)
30