10
60
(K10a
1
)
A knot diagram
1
Linearized knot diagam
8 4 6 7 9 3 10 1 5 2
Solving Sequence
4,6
3 7
5,10
8 2 1 9
c
3
c
6
c
4
c
7
c
2
c
1
c
9
c
5
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
10
u
9
+ 3u
8
2u
7
+ 3u
6
2u
5
u
2
+ b, u
10
u
9
+ 4u
8
3u
7
+ 6u
6
4u
5
+ 3u
4
2u
3
u
2
+ a,
u
12
u
11
+ 4u
10
3u
9
+ 7u
8
5u
7
+ 6u
6
4u
5
+ 2u
4
2u
3
+ u
2
+ 1i
I
u
2
= h−u
33
+ u
32
+ ··· + b + 1, u
32
+ 2u
31
+ ··· + a 2, u
34
2u
33
+ ··· 3u + 1i
I
u
3
= hb + u, a, u
2
+ u + 1i
I
u
4
= hb + 1, a, u
2
+ u + 1i
* 4 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
10
u
9
+ 3u
8
2u
7
+ 3u
6
2u
5
u
2
+ b, u
10
u
9
+ · · · u
2
+
a, u
12
u
11
+ · · · + u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
3
+ u
a
5
=
u
4
+ u
2
+ 1
u
6
+ 2u
4
+ u
2
a
10
=
u
10
+ u
9
4u
8
+ 3u
7
6u
6
+ 4u
5
3u
4
+ 2u
3
+ u
2
u
10
+ u
9
3u
8
+ 2u
7
3u
6
+ 2u
5
+ u
2
a
8
=
u
11
u
10
+ 3u
9
2u
8
+ 3u
7
2u
6
2u
3
u
9
+ u
8
3u
7
+ 2u
6
3u
5
+ 2u
4
u
3
a
2
=
u
2
+ 1
u
2
a
1
=
u
10
+ u
9
4u
8
+ 3u
7
6u
6
+ 4u
5
4u
4
+ 2u
3
u
10
+ u
9
3u
8
+ 2u
7
3u
6
+ 2u
5
u
4
+ u
2
a
9
=
u
9
u
8
+ 3u
7
2u
6
+ 4u
5
2u
4
+ 2u
3
u
11
u
10
+ 4u
9
3u
8
+ 6u
7
4u
6
+ 4u
5
2u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
11
8u
10
+ 18u
9
26u
8
+ 34u
7
40u
6
+ 34u
5
24u
4
+ 16u
3
4u
2
+ 6u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
12
+ u
11
+ 4u
10
+ 3u
9
+ 7u
8
+ 5u
7
+ 6u
6
+ 4u
5
+ 2u
4
+ 2u
3
+ u
2
+ 1
c
2
, c
10
u
12
+ 7u
11
+ ··· + 2u + 1
c
4
, c
7
u
12
u
11
+ ··· + 2u + 1
c
5
, c
9
u
12
5u
11
+ ··· 12u + 4
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
12
+ 7y
11
+ ··· + 2y + 1
c
2
, c
10
y
12
y
11
+ ··· + 6y + 1
c
4
, c
7
y
12
9y
11
+ ··· + 2y + 1
c
5
, c
9
y
12
+ 5y
11
+ ··· 16y + 16
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.178968 + 0.877941I
a = 1.176440 0.426280I
b = 0.702552 + 0.572575I
1.87720 1.89052I 4.24850 + 3.95054I
u = 0.178968 0.877941I
a = 1.176440 + 0.426280I
b = 0.702552 0.572575I
1.87720 + 1.89052I 4.24850 3.95054I
u = 0.780097 + 0.281995I
a = 1.73075 + 0.13511I
b = 1.057890 + 0.528101I
0.78013 3.73206I 3.21966 + 2.51013I
u = 0.780097 0.281995I
a = 1.73075 0.13511I
b = 1.057890 0.528101I
0.78013 + 3.73206I 3.21966 2.51013I
u = 0.496677 + 1.117040I
a = 0.55633 + 2.12256I
b = 2.35694 + 1.72461I
2.98532 7.52709I 1.88445 + 6.81034I
u = 0.496677 1.117040I
a = 0.55633 2.12256I
b = 2.35694 1.72461I
2.98532 + 7.52709I 1.88445 6.81034I
u = 0.335900 + 1.207600I
a = 0.736004 0.940791I
b = 1.36295 1.08335I
9.48086 + 3.21477I 6.88179 3.24710I
u = 0.335900 1.207600I
a = 0.736004 + 0.940791I
b = 1.36295 + 1.08335I
9.48086 3.21477I 6.88179 + 3.24710I
u = 0.577185 + 1.164540I
a = 0.15978 1.92327I
b = 2.60480 1.08526I
5.9276 + 13.9800I 2.44387 9.26853I
u = 0.577185 1.164540I
a = 0.15978 + 1.92327I
b = 2.60480 + 1.08526I
5.9276 13.9800I 2.44387 + 9.26853I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.517537 + 0.434237I
a = 1.57824 0.67661I
b = 0.319971 0.990159I
1.31194 0.92364I 6.23895 + 2.73595I
u = 0.517537 0.434237I
a = 1.57824 + 0.67661I
b = 0.319971 + 0.990159I
1.31194 + 0.92364I 6.23895 2.73595I
6
II.
I
u
2
= h−u
33
+u
32
+· · ·+b+1, u
32
+2u
31
+· · ·+a2, u
34
2u
33
+· · ·3u+1i
(i) Arc colorings
a
4
=
1
0
a
6
=
0
u
a
3
=
1
u
2
a
7
=
u
u
3
+ u
a
5
=
u
4
+ u
2
+ 1
u
6
+ 2u
4
+ u
2
a
10
=
u
32
2u
31
+ ··· 3u + 2
u
33
u
32
+ ··· + 2u 1
a
8
=
u
12
+ 3u
10
+ 5u
8
2u
7
+ 4u
6
4u
5
+ 2u
4
4u
3
+ u
2
+ 1
u
33
+ u
32
+ ··· + 3u
2
u
a
2
=
u
2
+ 1
u
2
a
1
=
3u
32
3u
31
+ ··· 6u + 4
2u
33
+ 14u
31
+ ··· + 2u
3
+ u
2
a
9
=
2u
32
2u
31
+ ··· 3u + 2
u
33
+ u
32
+ ··· + u
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
33
+ 8u
32
27u
31
+ 61u
30
117u
29
+ 247u
28
346u
27
+
669u
26
778u
25
+ 1328u
24
1416u
23
+ 2034u
22
2108u
21
+ 2492u
20
2552u
19
+
2536u
18
2457u
17
+ 2183u
16
1857u
15
+ 1579u
14
1103u
13
+ 889u
12
533u
11
+
364u
10
219u
9
+ 98u
8
68u
7
+ 38u
6
24u
5
+ 20u
4
6u
3
+ 14u
2
7u + 7
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
3
, c
6
c
8
u
34
+ 2u
33
+ ··· + 3u + 1
c
2
, c
10
u
34
+ 16u
33
+ ··· + u + 1
c
4
, c
7
u
34
2u
33
+ ··· 183u + 73
c
5
, c
9
(u
17
+ 2u
16
+ ··· 5u 2)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
y
34
+ 16y
33
+ ··· + y + 1
c
2
, c
10
y
34
+ 4y
33
+ ··· + 17y + 1
c
4
, c
7
y
34
8y
33
+ ··· 12903y + 5329
c
5
, c
9
(y
17
+ 10y
16
+ ··· 23y 4)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.723313 + 0.731528I
a = 0.151866 + 0.654346I
b = 0.514055 0.693038I
0.85292 6.04614I 0.59802 + 7.72564I
u = 0.723313 0.731528I
a = 0.151866 0.654346I
b = 0.514055 + 0.693038I
0.85292 + 6.04614I 0.59802 7.72564I
u = 0.624264 + 0.668207I
a = 0.475559 0.697137I
b = 0.299501 0.231577I
1.18281 1.86595I 4.34837 + 4.33037I
u = 0.624264 0.668207I
a = 0.475559 + 0.697137I
b = 0.299501 + 0.231577I
1.18281 + 1.86595I 4.34837 4.33037I
u = 0.575012 + 0.946029I
a = 0.488103 0.422358I
b = 0.267905 0.921351I
0.36198 2.83643I 1.96538 + 0.68566I
u = 0.575012 0.946029I
a = 0.488103 + 0.422358I
b = 0.267905 + 0.921351I
0.36198 + 2.83643I 1.96538 0.68566I
u = 0.839419 + 0.294756I
a = 2.21863 0.02513I
b = 1.75177 0.94314I
3.32961 8.73955I 0.19211 + 5.92158I
u = 0.839419 0.294756I
a = 2.21863 + 0.02513I
b = 1.75177 + 0.94314I
3.32961 + 8.73955I 0.19211 5.92158I
u = 0.678441 + 0.881986I
a = 0.269083 0.051645I
b = 1.117340 0.103610I
1.29776 + 0.72905I 2.79971 1.68011I
u = 0.678441 0.881986I
a = 0.269083 + 0.051645I
b = 1.117340 + 0.103610I
1.29776 0.72905I 2.79971 + 1.68011I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.441434 + 1.051180I
a = 0.086124 0.253169I
b = 1.117340 0.103610I
1.29776 + 0.72905I 2.79971 1.68011I
u = 0.441434 1.051180I
a = 0.086124 + 0.253169I
b = 1.117340 + 0.103610I
1.29776 0.72905I 2.79971 + 1.68011I
u = 0.484889 + 1.050780I
a = 0.26211 1.43780I
b = 1.36154 1.18102I
0.47242 3.20284I 2.38038 + 3.25895I
u = 0.484889 1.050780I
a = 0.26211 + 1.43780I
b = 1.36154 + 1.18102I
0.47242 + 3.20284I 2.38038 3.25895I
u = 0.387508 + 1.102150I
a = 0.68089 + 1.93658I
b = 2.09444
3.76357 3.71974 + 0.I
u = 0.387508 1.102150I
a = 0.68089 1.93658I
b = 2.09444
3.76357 3.71974 + 0.I
u = 0.805751 + 0.171048I
a = 1.33086 + 0.63651I
b = 1.30277 + 0.63774I
5.23887 0.57053I 2.63434 0.09683I
u = 0.805751 0.171048I
a = 1.33086 0.63651I
b = 1.30277 0.63774I
5.23887 + 0.57053I 2.63434 + 0.09683I
u = 0.492477 + 1.076420I
a = 0.071402 + 0.579407I
b = 0.514055 + 0.693038I
0.85292 + 6.04614I 0.59802 7.72564I
u = 0.492477 1.076420I
a = 0.071402 0.579407I
b = 0.514055 0.693038I
0.85292 6.04614I 0.59802 + 7.72564I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.276836 + 1.167190I
a = 0.004108 + 1.012990I
b = 1.30277 + 0.63774I
5.23887 0.57053I 2.63434 0.09683I
u = 0.276836 1.167190I
a = 0.004108 1.012990I
b = 1.30277 0.63774I
5.23887 + 0.57053I 2.63434 + 0.09683I
u = 0.242359 + 1.211260I
a = 0.12569 1.56340I
b = 1.50375 0.40483I
8.21063 5.43973I 5.49430 + 3.57628I
u = 0.242359 1.211260I
a = 0.12569 + 1.56340I
b = 1.50375 + 0.40483I
8.21063 + 5.43973I 5.49430 3.57628I
u = 0.556877 + 1.148560I
a = 0.15813 + 1.53835I
b = 1.75177 + 0.94314I
3.32961 + 8.73955I 0.19211 5.92158I
u = 0.556877 1.148560I
a = 0.15813 1.53835I
b = 1.75177 0.94314I
3.32961 8.73955I 0.19211 + 5.92158I
u = 0.520828 + 1.178390I
a = 0.76467 1.29488I
b = 1.50375 + 0.40483I
8.21063 + 5.43973I 5.49430 3.57628I
u = 0.520828 1.178390I
a = 0.76467 + 1.29488I
b = 1.50375 0.40483I
8.21063 5.43973I 5.49430 + 3.57628I
u = 0.372098 + 0.537745I
a = 0.782608 0.762639I
b = 0.267905 + 0.921351I
0.36198 + 2.83643I 1.96538 0.68566I
u = 0.372098 0.537745I
a = 0.782608 + 0.762639I
b = 0.267905 0.921351I
0.36198 2.83643I 1.96538 + 0.68566I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.521356 + 0.372677I
a = 0.897739 + 0.802529I
b = 0.299501 0.231577I
1.18281 1.86595I 4.34837 + 4.33037I
u = 0.521356 0.372677I
a = 0.897739 0.802529I
b = 0.299501 + 0.231577I
1.18281 + 1.86595I 4.34837 4.33037I
u = 0.596010 + 0.210045I
a = 2.57670 + 0.72377I
b = 1.36154 + 1.18102I
0.47242 + 3.20284I 2.38038 3.25895I
u = 0.596010 0.210045I
a = 2.57670 0.72377I
b = 1.36154 1.18102I
0.47242 3.20284I 2.38038 + 3.25895I
13
III. I
u
3
= hb + u, a, u
2
+ u + 1i
(i) Arc colorings
a
4
=
1
0
a
6
=
0
u
a
3
=
1
u 1
a
7
=
u
u + 1
a
5
=
0
u
a
10
=
0
u
a
8
=
u
u + 2
a
2
=
u
u 1
a
1
=
1
2u
a
9
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u + 4
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
, c
10
u
2
u + 1
c
3
, c
8
u
2
+ u + 1
c
5
, c
9
u
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
10
y
2
+ y + 1
c
5
, c
9
y
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
4.05977I 0. + 6.92820I
u = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
4.05977I 0. 6.92820I
17
IV. I
u
4
= hb + 1, a, u
2
+ u + 1i
(i) Arc colorings
a
4
=
1
0
a
6
=
0
u
a
3
=
1
u 1
a
7
=
u
u + 1
a
5
=
0
u
a
10
=
0
1
a
8
=
u
2u + 1
a
2
=
u
u 1
a
1
=
u 1
2
a
9
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
4
c
6
, c
7
, c
10
u
2
u + 1
c
3
, c
8
u
2
+ u + 1
c
5
, c
9
u
2
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
8
, c
10
y
2
+ y + 1
c
5
, c
9
y
2
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 1.00000
0 3.00000
u = 0.500000 0.866025I
a = 0
b = 1.00000
0 3.00000
21
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
(u
2
u + 1)
2
· (u
12
+ u
11
+ 4u
10
+ 3u
9
+ 7u
8
+ 5u
7
+ 6u
6
+ 4u
5
+ 2u
4
+ 2u
3
+ u
2
+ 1)
· (u
34
+ 2u
33
+ ··· + 3u + 1)
c
2
, c
10
((u
2
u + 1)
2
)(u
12
+ 7u
11
+ ··· + 2u + 1)(u
34
+ 16u
33
+ ··· + u + 1)
c
3
, c
8
(u
2
+ u + 1)
2
· (u
12
+ u
11
+ 4u
10
+ 3u
9
+ 7u
8
+ 5u
7
+ 6u
6
+ 4u
5
+ 2u
4
+ 2u
3
+ u
2
+ 1)
· (u
34
+ 2u
33
+ ··· + 3u + 1)
c
4
, c
7
((u
2
u + 1)
2
)(u
12
u
11
+ ··· + 2u + 1)(u
34
2u
33
+ ··· 183u + 73)
c
5
, c
9
u
4
(u
12
5u
11
+ ··· 12u + 4)(u
17
+ 2u
16
+ ··· 5u 2)
2
22
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
6
c
8
((y
2
+ y + 1)
2
)(y
12
+ 7y
11
+ ··· + 2y + 1)(y
34
+ 16y
33
+ ··· + y + 1)
c
2
, c
10
((y
2
+ y + 1)
2
)(y
12
y
11
+ ··· + 6y + 1)(y
34
+ 4y
33
+ ··· + 17y + 1)
c
4
, c
7
((y
2
+ y + 1)
2
)(y
12
9y
11
+ ··· + 2y + 1)
· (y
34
8y
33
+ ··· 12903y + 5329)
c
5
, c
9
y
4
(y
12
+ 5y
11
+ ··· 16y + 16)(y
17
+ 10y
16
+ ··· 23y 4)
2
23