12a
0649
(K12a
0649
)
A knot diagram
1
Linearized knot diagam
3 7 10 11 9 2 1 6 12 4 5 8
Solving Sequence
2,7
3 1 8 6 9 5 12 10 11 4
c
2
c
1
c
7
c
6
c
8
c
5
c
12
c
9
c
11
c
4
c
3
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
63
+ u
62
+ ··· + 2u + 1i
* 1 irreducible components of dim
C
= 0, with total 63 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
63
+ u
62
+ · · · + 2u + 1i
(i) Arc colorings
a
2
=
1
0
a
7
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
8
=
u
5
2u
3
+ u
u
7
u
5
+ u
a
6
=
u
u
a
9
=
u
9
+ 2u
7
u
5
2u
3
+ u
u
9
+ 3u
7
3u
5
+ u
a
5
=
u
17
4u
15
+ 7u
13
4u
11
3u
9
+ 6u
7
2u
5
+ u
u
17
5u
15
+ 11u
13
12u
11
+ 5u
9
+ 2u
7
2u
5
+ u
a
12
=
u
8
+ 3u
6
3u
4
+ 1
u
10
+ 2u
8
u
6
2u
4
+ u
2
a
10
=
u
27
8u
25
+ ··· 3u
3
+ 2u
u
29
7u
27
+ ··· + u
3
+ u
a
11
=
u
44
11u
42
+ ··· + u
2
+ 1
u
44
12u
42
+ ··· 3u
4
+ 2u
2
a
4
=
u
54
+ 15u
52
+ ··· 2u
2
+ 1
u
56
+ 14u
54
+ ··· 13u
8
+ 10u
6
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
61
64u
59
+ ··· 8u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
63
+ 33u
62
+ ··· + 4u + 1
c
2
, c
6
u
63
u
62
+ ··· + 2u 1
c
3
, c
4
, c
10
c
11
u
63
+ u
62
+ ··· + 2u
2
1
c
5
, c
8
u
63
5u
62
+ ··· 384u + 41
c
7
, c
12
u
63
3u
62
+ ··· + 164u 9
c
9
u
63
+ 19u
62
+ ··· + 38968u + 4073
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
63
5y
62
+ ··· 8y 1
c
2
, c
6
y
63
33y
62
+ ··· + 4y 1
c
3
, c
4
, c
10
c
11
y
63
73y
62
+ ··· + 4y 1
c
5
, c
8
y
63
+ 47y
62
+ ··· 36224y 1681
c
7
, c
12
y
63
+ 43y
62
+ ··· + 27400y 81
c
9
y
63
25y
62
+ ··· + 96017920y 16589329
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.807336 + 0.596819I
13.3335 + 7.7246I 10.00998 6.36298I
u = 0.807336 0.596819I
13.3335 7.7246I 10.00998 + 6.36298I
u = 0.797322 + 0.579716I
5.11223 5.63114I 8.39389 + 7.97661I
u = 0.797322 0.579716I
5.11223 + 5.63114I 8.39389 7.97661I
u = 0.971710
4.41099 0.384110
u = 0.924847 + 0.292781I
0.45640 + 3.17636I 1.88577 8.75054I
u = 0.924847 0.292781I
0.45640 3.17636I 1.88577 + 8.75054I
u = 0.771159 + 0.561770I
2.89928 + 2.24328I 4.38244 3.59011I
u = 0.771159 0.561770I
2.89928 2.24328I 4.38244 + 3.59011I
u = 0.734481 + 0.605389I
13.54260 3.01261I 10.67968 0.23092I
u = 0.734481 0.605389I
13.54260 + 3.01261I 10.67968 + 0.23092I
u = 0.961610 + 0.434304I
7.01116 4.42511I 6.14172 + 6.08207I
u = 0.961610 0.434304I
7.01116 + 4.42511I 6.14172 6.08207I
u = 0.741982 + 0.582849I
5.27071 + 1.03217I 9.12178 1.02959I
u = 0.741982 0.582849I
5.27071 1.03217I 9.12178 + 1.02959I
u = 0.858425 + 0.141613I
1.43959 0.53362I 4.53498 + 0.33396I
u = 0.858425 0.141613I
1.43959 + 0.53362I 4.53498 0.33396I
u = 1.103660 + 0.285741I
7.32672 4.55583I 0
u = 1.103660 0.285741I
7.32672 + 4.55583I 0
u = 1.114240 + 0.357197I
0.73485 + 3.08669I 0
u = 1.114240 0.357197I
0.73485 3.08669I 0
u = 0.200631 + 0.794151I
10.38970 8.95920I 8.29474 + 4.99884I
u = 0.200631 0.794151I
10.38970 + 8.95920I 8.29474 4.99884I
u = 0.193476 + 0.779461I
2.31625 + 6.69956I 6.24548 6.73377I
u = 0.193476 0.779461I
2.31625 6.69956I 6.24548 + 6.73377I
u = 0.254888 + 0.737304I
11.42830 + 1.53659I 9.80270 0.48128I
u = 0.254888 0.737304I
11.42830 1.53659I 9.80270 + 0.48128I
u = 1.166850 + 0.360700I
3.54242 0.43587I 0
u = 1.166850 0.360700I
3.54242 + 0.43587I 0
u = 0.186925 + 0.753807I
0.40491 3.15228I 2.37370 + 2.31233I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.186925 0.753807I
0.40491 + 3.15228I 2.37370 2.31233I
u = 1.181980 + 0.345078I
1.80137 3.07345I 0
u = 1.181980 0.345078I
1.80137 + 3.07345I 0
u = 0.070169 + 0.760914I
3.95236 + 3.34328I 4.11045 3.28316I
u = 0.070169 0.760914I
3.95236 3.34328I 4.11045 + 3.28316I
u = 1.191770 + 0.334933I
6.16317 + 5.31923I 0
u = 1.191770 0.334933I
6.16317 5.31923I 0
u = 0.222898 + 0.726961I
3.10820 + 0.15733I 8.25846 + 1.53332I
u = 0.222898 0.726961I
3.10820 0.15733I 8.25846 1.53332I
u = 1.141590 + 0.528482I
8.83894 + 3.23888I 0
u = 1.141590 0.528482I
8.83894 3.23888I 0
u = 1.179730 + 0.439001I
5.98396 2.56449I 0
u = 1.179730 0.439001I
5.98396 + 2.56449I 0
u = 1.190440 + 0.416970I
0.292282 + 0.762436I 0
u = 1.190440 0.416970I
0.292282 0.762436I 0
u = 1.150390 + 0.517447I
0.40909 4.85871I 0
u = 1.150390 0.517447I
0.40909 + 4.85871I 0
u = 1.180060 + 0.458564I
5.84513 + 5.94356I 0
u = 1.180060 0.458564I
5.84513 5.94356I 0
u = 0.027218 + 0.730004I
2.55159 1.61131I 0.22743 + 4.58020I
u = 0.027218 0.730004I
2.55159 + 1.61131I 0.22743 4.58020I
u = 1.166670 + 0.516614I
2.45072 + 7.90304I 0
u = 1.166670 0.516614I
2.45072 7.90304I 0
u = 1.186890 + 0.476518I
0.71091 7.86927I 0
u = 1.186890 0.476518I
0.71091 + 7.86927I 0
u = 1.172460 + 0.524704I
0.55674 11.54750I 0
u = 1.172460 0.524704I
0.55674 + 11.54750I 0
u = 1.175300 + 0.530872I
7.5181 + 13.8713I 0
u = 1.175300 0.530872I
7.5181 13.8713I 0
u = 0.476432 + 0.503510I
8.37645 + 0.49060I 10.31482 + 0.06254I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.476432 0.503510I
8.37645 0.49060I 10.31482 0.06254I
u = 0.430431 + 0.317615I
0.981121 0.128738I 10.38339 + 0.79799I
u = 0.430431 0.317615I
0.981121 + 0.128738I 10.38339 0.79799I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
63
+ 33u
62
+ ··· + 4u + 1
c
2
, c
6
u
63
u
62
+ ··· + 2u 1
c
3
, c
4
, c
10
c
11
u
63
+ u
62
+ ··· + 2u
2
1
c
5
, c
8
u
63
5u
62
+ ··· 384u + 41
c
7
, c
12
u
63
3u
62
+ ··· + 164u 9
c
9
u
63
+ 19u
62
+ ··· + 38968u + 4073
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
63
5y
62
+ ··· 8y 1
c
2
, c
6
y
63
33y
62
+ ··· + 4y 1
c
3
, c
4
, c
10
c
11
y
63
73y
62
+ ··· + 4y 1
c
5
, c
8
y
63
+ 47y
62
+ ··· 36224y 1681
c
7
, c
12
y
63
+ 43y
62
+ ··· + 27400y 81
c
9
y
63
25y
62
+ ··· + 96017920y 16589329
9