12a
0651
(K12a
0651
)
A knot diagram
1
Linearized knot diagam
3 7 10 11 12 8 2 1 6 4 5 9
Solving Sequence
2,8
7 3 1 9 6 10 4 12 5 11
c
7
c
2
c
1
c
8
c
6
c
9
c
3
c
12
c
5
c
11
c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
48
u
47
+ ··· 2u
2
1i
* 1 irreducible components of dim
C
= 0, with total 48 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
48
u
47
+ · · · 2u
2
1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
u
8
u
6
u
4
+ 1
u
10
2u
8
3u
6
2u
4
u
2
a
6
=
u
2
+ 1
u
2
a
10
=
u
14
+ 3u
12
+ 6u
10
+ 7u
8
+ 6u
6
+ 4u
4
+ 2u
2
+ 1
u
14
+ 2u
12
+ 3u
10
+ 2u
8
u
2
a
4
=
u
31
6u
29
+ ··· 18u
5
6u
3
u
31
5u
29
+ ··· + 2u
3
+ u
a
12
=
u
13
+ 2u
11
+ 3u
9
+ 2u
7
u
u
15
+ 3u
13
+ 6u
11
+ 7u
9
+ 6u
7
+ 4u
5
+ 2u
3
+ u
a
5
=
u
30
5u
28
+ ··· + 2u
2
+ 1
u
32
6u
30
+ ··· 18u
6
6u
4
a
11
=
u
47
8u
45
+ ··· + 18u
5
+ 6u
3
u
47
+ u
46
+ ··· 2u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
46
4u
45
+ ··· + 12u 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
48
+ 17u
47
+ ··· + 4u + 1
c
2
, c
7
u
48
+ u
47
+ ··· 2u
2
1
c
3
, c
4
, c
5
c
10
, c
11
u
48
u
47
+ ··· 2u 1
c
8
, c
12
u
48
5u
47
+ ··· + 100u 39
c
9
u
48
5u
47
+ ··· + 912u + 1305
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
48
+ 29y
47
+ ··· 16y + 1
c
2
, c
7
y
48
+ 17y
47
+ ··· + 4y + 1
c
3
, c
4
, c
5
c
10
, c
11
y
48
63y
47
+ ··· + 4y + 1
c
8
, c
12
y
48
+ 37y
47
+ ··· + 24632y + 1521
c
9
y
48
23y
47
+ ··· 23246424y + 1703025
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.802127 + 0.589214I
13.2341 6.6512I 8.69292 + 2.70499I
u = 0.802127 0.589214I
13.2341 + 6.6512I 8.69292 2.70499I
u = 0.780450 + 0.595412I
3.45383 + 5.14659I 7.86923 4.15340I
u = 0.780450 0.595412I
3.45383 5.14659I 7.86923 + 4.15340I
u = 0.306787 + 0.928044I
13.29560 2.74578I 13.24399 + 4.02587I
u = 0.306787 0.928044I
13.29560 + 2.74578I 13.24399 4.02587I
u = 0.744340 + 0.609755I
0.47988 2.41400I 2.77620 + 3.95017I
u = 0.744340 0.609755I
0.47988 + 2.41400I 2.77620 3.95017I
u = 0.709694 + 0.805377I
1.43993 0.10326I 4.11691 1.57301I
u = 0.709694 0.805377I
1.43993 + 0.10326I 4.11691 + 1.57301I
u = 0.019095 + 1.077630I
5.06998 1.60211I 10.45738 + 4.05120I
u = 0.019095 1.077630I
5.06998 + 1.60211I 10.45738 4.05120I
u = 0.750182 + 0.779791I
7.19201 0.77835I 5.36224 + 0.06889I
u = 0.750182 0.779791I
7.19201 + 0.77835I 5.36224 0.06889I
u = 0.669363 + 0.604587I
0.001527 0.587302I 4.68221 + 4.09309I
u = 0.669363 0.604587I
0.001527 + 0.587302I 4.68221 4.09309I
u = 0.040819 + 1.103530I
9.34090 + 4.19623I 14.8023 4.2142I
u = 0.040819 1.103530I
9.34090 4.19623I 14.8023 + 4.2142I
u = 0.701243 + 0.856750I
3.68589 + 2.68723I 1.90848 3.59326I
u = 0.701243 0.856750I
3.68589 2.68723I 1.90848 + 3.59326I
u = 0.303851 + 0.826787I
3.75546 + 2.27659I 12.89646 5.30128I
u = 0.303851 0.826787I
3.75546 2.27659I 12.89646 + 5.30128I
u = 0.050388 + 1.121400I
19.3092 5.5995I 15.3152 + 3.0524I
u = 0.050388 1.121400I
19.3092 + 5.5995I 15.3152 3.0524I
u = 0.701027 + 0.900492I
1.15320 5.29793I 5.03627 + 7.68449I
u = 0.701027 0.900492I
1.15320 + 5.29793I 5.03627 7.68449I
u = 0.715058 + 0.438137I
14.1380 3.7995I 9.38326 + 2.79474I
u = 0.715058 0.438137I
14.1380 + 3.7995I 9.38326 2.79474I
u = 0.719743 + 0.928582I
7.64175 + 6.35454I 6.48748 5.77861I
u = 0.719743 0.928582I
7.64175 6.35454I 6.48748 + 5.77861I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.672923 + 0.473750I
4.26296 + 2.63953I 9.04168 4.04694I
u = 0.672923 0.473750I
4.26296 2.63953I 9.04168 + 4.04694I
u = 0.620090 + 1.027290I
5.75948 + 2.34942I 11.55550 1.52820I
u = 0.620090 1.027290I
5.75948 2.34942I 11.55550 + 1.52820I
u = 0.648633 + 1.012460I
1.18407 4.57916I 6.64611 + 1.38024I
u = 0.648633 1.012460I
1.18407 + 4.57916I 6.64611 1.38024I
u = 0.608868 + 1.044010I
15.8277 1.2103I 12.22073 + 2.35699I
u = 0.608868 1.044010I
15.8277 + 1.2103I 12.22073 2.35699I
u = 0.668938 + 1.023950I
0.74329 + 7.81387I 4.00000 8.53366I
u = 0.668938 1.023950I
0.74329 7.81387I 4.00000 + 8.53366I
u = 0.676813 + 1.038570I
4.76998 10.66020I 9.85701 + 8.71110I
u = 0.676813 1.038570I
4.76998 + 10.66020I 9.85701 8.71110I
u = 0.681817 + 1.047990I
14.6043 + 12.2368I 10.70547 7.24531I
u = 0.681817 1.047990I
14.6043 12.2368I 10.70547 + 7.24531I
u = 0.545430
10.6248 6.00350
u = 0.257194 + 0.480005I
0.181190 0.868139I 4.26608 + 7.69273I
u = 0.257194 0.480005I
0.181190 + 0.868139I 4.26608 7.69273I
u = 0.420030
1.58694 4.88980
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
48
+ 17u
47
+ ··· + 4u + 1
c
2
, c
7
u
48
+ u
47
+ ··· 2u
2
1
c
3
, c
4
, c
5
c
10
, c
11
u
48
u
47
+ ··· 2u 1
c
8
, c
12
u
48
5u
47
+ ··· + 100u 39
c
9
u
48
5u
47
+ ··· + 912u + 1305
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
48
+ 29y
47
+ ··· 16y + 1
c
2
, c
7
y
48
+ 17y
47
+ ··· + 4y + 1
c
3
, c
4
, c
5
c
10
, c
11
y
48
63y
47
+ ··· + 4y + 1
c
8
, c
12
y
48
+ 37y
47
+ ··· + 24632y + 1521
c
9
y
48
23y
47
+ ··· 23246424y + 1703025
8