12a
0652
(K12a
0652
)
A knot diagram
1
Linearized knot diagam
3 7 10 11 12 8 2 1 6 5 4 9
Solving Sequence
2,8
7 3 1 9 6 10 4 12 5 11
c
7
c
2
c
1
c
8
c
6
c
9
c
3
c
12
c
5
c
11
c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
77
u
76
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 77 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
77
u
76
+ · · · u 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
9
=
u
8
u
6
u
4
+ 1
u
10
2u
8
3u
6
2u
4
u
2
a
6
=
u
2
+ 1
u
2
a
10
=
u
14
+ 3u
12
+ 6u
10
+ 7u
8
+ 6u
6
+ 4u
4
+ 2u
2
+ 1
u
14
+ 2u
12
+ 3u
10
+ 2u
8
u
2
a
4
=
u
31
6u
29
+ ··· 18u
5
6u
3
u
31
5u
29
+ ··· + 2u
3
+ u
a
12
=
u
13
+ 2u
11
+ 3u
9
+ 2u
7
u
u
15
+ 3u
13
+ 6u
11
+ 7u
9
+ 6u
7
+ 4u
5
+ 2u
3
+ u
a
5
=
u
30
5u
28
+ ··· + 2u
2
+ 1
u
32
6u
30
+ ··· 18u
6
6u
4
a
11
=
u
76
+ 13u
74
+ ··· + 3u
2
+ 1
u
76
u
75
+ ··· + 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
75
4u
74
+ ··· + 12u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
u
77
+ 27u
76
+ ··· 5u 1
c
2
, c
7
u
77
+ u
76
+ ··· u + 1
c
3
, c
5
u
77
u
76
+ ··· + 125u + 37
c
4
, c
10
, c
11
u
77
+ u
76
+ ··· + 3u + 1
c
8
, c
12
u
77
5u
76
+ ··· 1000u + 112
c
9
u
77
7u
76
+ ··· + 707u 55
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
77
+ 47y
76
+ ··· y 1
c
2
, c
7
y
77
+ 27y
76
+ ··· 5y 1
c
3
, c
5
y
77
53y
76
+ ··· 24557y 1369
c
4
, c
10
, c
11
y
77
+ 63y
76
+ ··· 5y 1
c
8
, c
12
y
77
+ 55y
76
+ ··· 254176y 12544
c
9
y
77
13y
76
+ ··· + 127499y 3025
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.767529 + 0.640028I
6.28167 + 3.64431I 0
u = 0.767529 0.640028I
6.28167 3.64431I 0
u = 0.796599 + 0.602734I
0.58640 9.94909I 0
u = 0.796599 0.602734I
0.58640 + 9.94909I 0
u = 0.790354 + 0.596356I
3.97378 + 5.75046I 0
u = 0.790354 0.596356I
3.97378 5.75046I 0
u = 0.714241 + 0.723377I
4.65576 + 2.80831I 0
u = 0.714241 0.723377I
4.65576 2.80831I 0
u = 0.779593 + 0.587691I
0.83188 1.51444I 4.00000 + 0.I
u = 0.779593 0.587691I
0.83188 + 1.51444I 4.00000 + 0.I
u = 0.739590 + 0.614293I
0.54882 2.32085I 4.00000 + 4.35719I
u = 0.739590 0.614293I
0.54882 + 2.32085I 4.00000 4.35719I
u = 0.355189 + 0.885687I
0.13092 6.42409I 6.49563 + 7.55459I
u = 0.355189 0.885687I
0.13092 + 6.42409I 6.49563 7.55459I
u = 0.053490 + 1.054100I
0.50982 + 3.18183I 0
u = 0.053490 1.054100I
0.50982 3.18183I 0
u = 0.018030 + 1.072430I
4.95935 1.55132I 0
u = 0.018030 1.072430I
4.95935 + 1.55132I 0
u = 0.309910 + 0.869885I
4.29728 + 2.46833I 11.58640 4.77585I
u = 0.309910 0.869885I
4.29728 2.46833I 11.58640 + 4.77585I
u = 0.722298 + 0.799569I
1.242630 + 0.172666I 0
u = 0.722298 0.799569I
1.242630 0.172666I 0
u = 0.667595 + 0.617931I
0.079449 0.606625I 4.37867 + 4.13336I
u = 0.667595 0.617931I
0.079449 + 0.606625I 4.37867 4.13336I
u = 0.244459 + 0.872287I
0.63700 + 1.40817I 7.77578 + 0.80099I
u = 0.244459 0.872287I
0.63700 1.40817I 7.77578 0.80099I
u = 0.742292 + 0.808838I
5.79449 3.80795I 0
u = 0.742292 0.808838I
5.79449 + 3.80795I 0
u = 0.695161 + 0.854828I
3.60047 + 2.66787I 0
u = 0.695161 0.854828I
3.60047 2.66787I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.635891 + 0.903812I
3.88187 + 2.39954I 0
u = 0.635891 0.903812I
3.88187 2.39954I 0
u = 0.036950 + 1.108930I
6.70754 0.49420I 0
u = 0.036950 1.108930I
6.70754 + 0.49420I 0
u = 0.047933 + 1.109520I
9.95665 + 4.78977I 0
u = 0.047933 1.109520I
9.95665 4.78977I 0
u = 0.056065 + 1.109190I
5.46749 9.03732I 0
u = 0.056065 1.109190I
5.46749 + 9.03732I 0
u = 0.733136 + 0.860855I
9.52540 2.78409I 0
u = 0.733136 0.860855I
9.52540 + 2.78409I 0
u = 0.708955 + 0.907491I
0.91799 5.63546I 0
u = 0.708955 0.907491I
0.91799 + 5.63546I 0
u = 0.696328 + 0.480021I
1.53055 + 1.07598I 4.35115 0.38666I
u = 0.696328 0.480021I
1.53055 1.07598I 4.35115 + 0.38666I
u = 0.724452 + 0.906811I
5.49817 + 9.37701I 0
u = 0.724452 0.906811I
5.49817 9.37701I 0
u = 0.659555 + 0.964128I
3.92779 + 2.48033I 0
u = 0.659555 0.964128I
3.92779 2.48033I 0
u = 0.686146 + 0.450824I
4.87661 + 3.11233I 7.53324 3.62541I
u = 0.686146 0.450824I
4.87661 3.11233I 7.53324 + 3.62541I
u = 0.604287 + 1.031010I
2.08704 + 2.38689I 0
u = 0.604287 1.031010I
2.08704 2.38689I 0
u = 0.681244 + 0.427432I
0.45981 7.28130I 2.78236 + 6.05298I
u = 0.681244 0.427432I
0.45981 + 7.28130I 2.78236 6.05298I
u = 0.650396 + 1.008820I
1.06542 4.56285I 0
u = 0.650396 1.008820I
1.06542 + 4.56285I 0
u = 0.612519 + 1.032810I
6.46139 + 1.85421I 0
u = 0.612519 1.032810I
6.46139 1.85421I 0
u = 0.622370 + 1.034490I
3.06619 6.13166I 0
u = 0.622370 1.034490I
3.06619 + 6.13166I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.668586 + 1.021010I
0.65211 + 7.70825I 0
u = 0.668586 1.021010I
0.65211 7.70825I 0
u = 0.684993 + 1.018520I
5.14995 9.16004I 0
u = 0.684993 1.018520I
5.14995 + 9.16004I 0
u = 0.674345 + 1.040570I
2.17378 + 7.01516I 0
u = 0.674345 1.040570I
2.17378 7.01516I 0
u = 0.680506 + 1.041540I
5.29992 11.30270I 0
u = 0.680506 1.041540I
5.29992 + 11.30270I 0
u = 0.684731 + 1.041550I
0.7247 + 15.5336I 0
u = 0.684731 1.041550I
0.7247 15.5336I 0
u = 0.513241 + 0.334360I
4.82076 + 1.75633I 2.56531 3.98388I
u = 0.513241 0.334360I
4.82076 1.75633I 2.56531 + 3.98388I
u = 0.255361 + 0.463798I
0.166525 0.855075I 3.98465 + 7.89301I
u = 0.255361 0.463798I
0.166525 + 0.855075I 3.98465 7.89301I
u = 0.495154 + 0.073528I
2.07428 + 3.61210I 0.95126 2.73924I
u = 0.495154 0.073528I
2.07428 3.61210I 0.95126 + 2.73924I
u = 0.465846
1.94396 3.97790
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
u
77
+ 27u
76
+ ··· 5u 1
c
2
, c
7
u
77
+ u
76
+ ··· u + 1
c
3
, c
5
u
77
u
76
+ ··· + 125u + 37
c
4
, c
10
, c
11
u
77
+ u
76
+ ··· + 3u + 1
c
8
, c
12
u
77
5u
76
+ ··· 1000u + 112
c
9
u
77
7u
76
+ ··· + 707u 55
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
y
77
+ 47y
76
+ ··· y 1
c
2
, c
7
y
77
+ 27y
76
+ ··· 5y 1
c
3
, c
5
y
77
53y
76
+ ··· 24557y 1369
c
4
, c
10
, c
11
y
77
+ 63y
76
+ ··· 5y 1
c
8
, c
12
y
77
+ 55y
76
+ ··· 254176y 12544
c
9
y
77
13y
76
+ ··· + 127499y 3025
9