12a
0667
(K12a
0667
)
A knot diagram
1
Linearized knot diagam
3 7 11 8 9 2 6 5 12 1 4 10
Solving Sequence
4,8
5 9
6,12
10 1 7 11 3 2
c
4
c
8
c
5
c
9
c
12
c
7
c
11
c
3
c
2
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h−6.17038 × 10
20
u
69
1.82582 × 10
21
u
68
+ ··· + 1.91455 × 10
20
b 4.81975 × 10
20
,
8.95967 × 10
20
u
69
2.35544 × 10
21
u
68
+ ··· + 9.57277 × 10
19
a 1.80647 × 10
21
,
u
70
+ 4u
69
+ ··· 12u + 1i
I
u
2
= hb, u
7
2u
6
+ 2u
5
+ 4u
4
2u
3
u
2
+ a + u 3, u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1i
I
u
3
= hb
2
+ b 1, a + 1, u 1i
* 3 irreducible components of dim
C
= 0, with total 80 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h−6.17 × 10
20
u
69
1.83 × 10
21
u
68
+ · · · + 1.91 × 10
20
b 4.82 ×
10
20
, 8.96 × 10
20
u
69
2.36 × 10
21
u
68
+ · · · + 9.57 × 10
19
a 1.81 ×
10
21
, u
70
+ 4u
69
+ · · · 12u + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
12
=
9.35954u
69
+ 24.6057u
68
+ ··· 158.582u + 18.8709
3.22288u
69
+ 9.53652u
68
+ ··· 38.9678u + 2.51743
a
10
=
10.8850u
69
+ 29.1016u
68
+ ··· 165.811u + 18.2326
0.777120u
69
+ 2.46348u
68
+ ··· 10.0322u + 0.482574
a
1
=
5.12581u
69
14.9838u
68
+ ··· + 40.9018u 1.06043
0.777120u
69
+ 2.46348u
68
+ ··· 10.0322u + 0.482574
a
7
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
11
=
6.13666u
69
+ 15.0692u
68
+ ··· 119.615u + 16.3535
3.22288u
69
+ 9.53652u
68
+ ··· 38.9678u + 2.51743
a
3
=
4.34064u
69
10.9959u
68
+ ··· + 62.9281u 7.39444
1.66141u
69
5.91374u
68
+ ··· + 28.6144u 1.97273
a
2
=
0.857437u
69
+ 3.79945u
68
+ ··· + 1.94293u 2.59562
3.53647u
69
+ 7.44091u
68
+ ··· 20.9351u + 1.99464
(ii) Obstruction class = 1
(iii) Cusp Shapes =
407739505172525880142
95727673049700434881
u
69
+
445100059269514406149
95727673049700434881
u
68
+ ···
14149863699302255302262
95727673049700434881
u +
2264603463256005582788
95727673049700434881
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
u
70
+ 18u
69
+ ··· + 392u + 16
c
2
, c
6
u
70
2u
69
+ ··· 4u + 4
c
3
, c
11
u
70
2u
69
+ ··· 128u + 256
c
4
, c
5
, c
8
u
70
4u
69
+ ··· + 12u + 1
c
9
, c
10
, c
12
u
70
+ 10u
69
+ ··· u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
70
+ 66y
69
+ ··· 11552y + 256
c
2
, c
6
y
70
18y
69
+ ··· 392y + 16
c
3
, c
11
y
70
54y
69
+ ··· 573440y + 65536
c
4
, c
5
, c
8
y
70
56y
69
+ ··· 16y + 1
c
9
, c
10
, c
12
y
70
74y
69
+ ··· 29y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.817401 + 0.528957I
a = 0.697679 + 0.470803I
b = 1.269240 0.137383I
4.41806 + 0.85765I 0
u = 0.817401 0.528957I
a = 0.697679 0.470803I
b = 1.269240 + 0.137383I
4.41806 0.85765I 0
u = 0.092064 + 0.919453I
a = 0.846984 + 0.675426I
b = 1.51562 + 0.63048I
13.9368 10.3001I 4.79104 + 5.95830I
u = 0.092064 0.919453I
a = 0.846984 0.675426I
b = 1.51562 0.63048I
13.9368 + 10.3001I 4.79104 5.95830I
u = 1.104440 + 0.096151I
a = 0.13603 + 3.19897I
b = 0.257699 + 0.472682I
0.029984 0.580196I 0
u = 1.104440 0.096151I
a = 0.13603 3.19897I
b = 0.257699 0.472682I
0.029984 + 0.580196I 0
u = 1.11750
a = 0.916637
b = 1.71816
6.85417 0
u = 0.062255 + 0.875793I
a = 1.267380 0.330024I
b = 1.322790 0.267712I
6.93192 5.96613I 3.25852 + 5.54743I
u = 0.062255 0.875793I
a = 1.267380 + 0.330024I
b = 1.322790 + 0.267712I
6.93192 + 5.96613I 3.25852 5.54743I
u = 0.033826 + 0.870423I
a = 0.060066 0.195647I
b = 0.059201 1.381390I
9.25108 3.13331I 4.39715 + 2.61893I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.033826 0.870423I
a = 0.060066 + 0.195647I
b = 0.059201 + 1.381390I
9.25108 + 3.13331I 4.39715 2.61893I
u = 0.057165 + 0.862768I
a = 0.958752 + 0.804540I
b = 1.56506 + 0.55688I
14.5560 + 3.8421I 5.88746 1.13079I
u = 0.057165 0.862768I
a = 0.958752 0.804540I
b = 1.56506 0.55688I
14.5560 3.8421I 5.88746 + 1.13079I
u = 0.010182 + 0.850415I
a = 1.350140 0.323162I
b = 1.323590 0.156129I
7.15687 0.24094I 4.01638 0.21668I
u = 0.010182 0.850415I
a = 1.350140 + 0.323162I
b = 1.323590 + 0.156129I
7.15687 + 0.24094I 4.01638 + 0.21668I
u = 0.375035 + 0.735499I
a = 0.059630 + 0.986262I
b = 1.272940 + 0.299722I
5.73321 5.43269I 2.26764 + 6.32769I
u = 0.375035 0.735499I
a = 0.059630 0.986262I
b = 1.272940 0.299722I
5.73321 + 5.43269I 2.26764 6.32769I
u = 0.819505
a = 0.555435
b = 0.476341
1.06753 12.4450
u = 0.083907 + 0.778419I
a = 0.0072775 0.0342586I
b = 0.030796 + 0.592717I
2.76619 2.72730I 3.14275 + 3.54347I
u = 0.083907 0.778419I
a = 0.0072775 + 0.0342586I
b = 0.030796 0.592717I
2.76619 + 2.72730I 3.14275 3.54347I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.222300 + 0.088016I
a = 0.89405 + 1.85771I
b = 0.677538 + 0.339165I
2.29879 1.51453I 0
u = 1.222300 0.088016I
a = 0.89405 1.85771I
b = 0.677538 0.339165I
2.29879 + 1.51453I 0
u = 1.192390 + 0.314674I
a = 0.633153 0.565521I
b = 0.031337 0.548172I
0.598685 1.239580I 0
u = 1.192390 0.314674I
a = 0.633153 + 0.565521I
b = 0.031337 + 0.548172I
0.598685 + 1.239580I 0
u = 1.273260 + 0.103339I
a = 0.193105 1.137600I
b = 0.976495 0.415875I
2.87928 + 1.19855I 0
u = 1.273260 0.103339I
a = 0.193105 + 1.137600I
b = 0.976495 + 0.415875I
2.87928 1.19855I 0
u = 1.221250 + 0.407858I
a = 0.766170 + 0.123778I
b = 1.62804 0.49593I
10.96800 + 0.71316I 0
u = 1.221250 0.407858I
a = 0.766170 0.123778I
b = 1.62804 + 0.49593I
10.96800 0.71316I 0
u = 1.216830 + 0.424213I
a = 0.065916 0.625238I
b = 1.273500 + 0.190068I
3.37423 + 1.31428I 0
u = 1.216830 0.424213I
a = 0.065916 + 0.625238I
b = 1.273500 0.190068I
3.37423 1.31428I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.202860 + 0.484691I
a = 0.732064 + 0.135694I
b = 1.51639 0.56369I
10.52640 + 5.31077I 0
u = 1.202860 0.484691I
a = 0.732064 0.135694I
b = 1.51639 + 0.56369I
10.52640 5.31077I 0
u = 1.290110 + 0.161362I
a = 0.44688 + 1.68716I
b = 0.542031 + 0.941291I
2.14802 + 3.82567I 0
u = 1.290110 0.161362I
a = 0.44688 1.68716I
b = 0.542031 0.941291I
2.14802 3.82567I 0
u = 1.245330 + 0.412665I
a = 1.12163 + 1.42898I
b = 0.027402 + 1.331840I
5.50508 1.46175I 0
u = 1.245330 0.412665I
a = 1.12163 1.42898I
b = 0.027402 1.331840I
5.50508 + 1.46175I 0
u = 1.264760 + 0.391396I
a = 0.24842 + 1.62749I
b = 1.278590 + 0.241779I
3.26582 4.21478I 0
u = 1.264760 0.391396I
a = 0.24842 1.62749I
b = 1.278590 0.241779I
3.26582 + 4.21478I 0
u = 1.281160 + 0.389589I
a = 0.038433 0.693152I
b = 1.357220 + 0.068668I
3.14091 + 4.69097I 0
u = 1.281160 0.389589I
a = 0.038433 + 0.693152I
b = 1.357220 0.068668I
3.14091 4.69097I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.350210 + 0.062844I
a = 0.622603 1.117160I
b = 0.419600 0.660924I
6.65005 + 1.01942I 0
u = 1.350210 0.062844I
a = 0.622603 + 1.117160I
b = 0.419600 + 0.660924I
6.65005 1.01942I 0
u = 1.346040 + 0.140036I
a = 2.16278 1.54711I
b = 1.245680 0.222159I
3.15551 3.32548I 0
u = 1.346040 0.140036I
a = 2.16278 + 1.54711I
b = 1.245680 + 0.222159I
3.15551 + 3.32548I 0
u = 1.344330 + 0.179173I
a = 0.30073 + 1.60507I
b = 0.919661 + 0.547737I
5.16563 + 5.58267I 0
u = 1.344330 0.179173I
a = 0.30073 1.60507I
b = 0.919661 0.547737I
5.16563 5.58267I 0
u = 1.300510 + 0.401241I
a = 1.00810 + 1.38334I
b = 0.14268 + 1.40895I
5.09074 + 7.69181I 0
u = 1.300510 0.401241I
a = 1.00810 1.38334I
b = 0.14268 1.40895I
5.09074 7.69181I 0
u = 1.320910 + 0.336659I
a = 0.483780 0.643166I
b = 0.043065 0.637222I
1.63951 + 6.75482I 0
u = 1.320910 0.336659I
a = 0.483780 + 0.643166I
b = 0.043065 + 0.637222I
1.63951 6.75482I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.308688 + 0.550304I
a = 0.918995 0.683177I
b = 0.821372 0.340072I
3.06118I 2.00068 + 8.85874I
u = 0.308688 0.550304I
a = 0.918995 + 0.683177I
b = 0.821372 + 0.340072I
3.06118I 2.00068 8.85874I
u = 1.315760 + 0.392744I
a = 0.21638 2.33271I
b = 1.50161 0.59687I
10.26400 8.34810I 0
u = 1.315760 0.392744I
a = 0.21638 + 2.33271I
b = 1.50161 + 0.59687I
10.26400 + 8.34810I 0
u = 1.320220 + 0.400178I
a = 0.17686 + 1.53471I
b = 1.344730 + 0.338262I
2.60924 + 10.54110I 0
u = 1.320220 0.400178I
a = 0.17686 1.53471I
b = 1.344730 0.338262I
2.60924 10.54110I 0
u = 1.347670 + 0.419839I
a = 0.11657 2.13013I
b = 1.49498 0.68093I
9.4229 + 15.0909I 0
u = 1.347670 0.419839I
a = 0.11657 + 2.13013I
b = 1.49498 + 0.68093I
9.4229 15.0909I 0
u = 0.540431 + 0.219713I
a = 0.174418 0.008470I
b = 0.431863 + 0.284604I
1.050260 0.096802I 9.26762 0.13740I
u = 0.540431 0.219713I
a = 0.174418 + 0.008470I
b = 0.431863 0.284604I
1.050260 + 0.096802I 9.26762 + 0.13740I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.41264 + 0.23660I
a = 1.12820 1.57936I
b = 1.171970 0.426637I
0.02016 + 8.81445I 0
u = 1.41264 0.23660I
a = 1.12820 + 1.57936I
b = 1.171970 + 0.426637I
0.02016 8.81445I 0
u = 1.45402
a = 1.76666
b = 1.04331
3.23881 0
u = 0.324618 + 0.427664I
a = 0.66119 + 1.88807I
b = 1.44762 + 0.13518I
8.35020 + 1.34425I 7.83795 1.26764I
u = 0.324618 0.427664I
a = 0.66119 1.88807I
b = 1.44762 0.13518I
8.35020 1.34425I 7.83795 + 1.26764I
u = 0.176682 + 0.474018I
a = 0.89919 1.18021I
b = 0.249486 0.754350I
2.34320 1.58119I 1.22087 + 3.59711I
u = 0.176682 0.474018I
a = 0.89919 + 1.18021I
b = 0.249486 + 0.754350I
2.34320 + 1.58119I 1.22087 3.59711I
u = 0.031462 + 0.272546I
a = 1.94920 2.01252I
b = 0.736009 + 0.023221I
1.228040 + 0.145895I 6.62969 + 0.43006I
u = 0.031462 0.272546I
a = 1.94920 + 2.01252I
b = 0.736009 0.023221I
1.228040 0.145895I 6.62969 0.43006I
u = 0.154844
a = 6.14014
b = 0.481532
1.16432 11.8160
11
II. I
u
2
=
hb, u
7
2u
6
+2u
5
+4u
4
2u
3
u
2
+a+u3, u
8
+u
7
3u
6
2u
5
+3u
4
+2u1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
12
=
u
7
+ 2u
6
2u
5
4u
4
+ 2u
3
+ u
2
u + 3
0
a
10
=
u
7
+ 2u
6
2u
5
4u
4
+ 2u
3
+ u
2
2u + 3
u
3
+ u
a
1
=
u
u
3
u
a
7
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
11
=
u
7
+ 2u
6
2u
5
4u
4
+ 2u
3
+ u
2
u + 3
0
a
3
=
1
0
a
2
=
u
3
+ 2u
u
3
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
7
10u
6
+ 7u
5
+ 25u
4
9u
3
12u
2
+ 8u 13
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
c
2
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
3
, c
11
u
8
c
4
, c
5
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
6
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1
c
7
u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1
c
8
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1
c
9
, c
10
(u + 1)
8
c
12
(u 1)
8
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
c
2
, c
6
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
3
, c
11
y
8
c
4
, c
5
, c
8
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
9
, c
10
, c
12
(y 1)
8
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.281371 + 1.128550I
b = 0
0.604279 1.131230I 2.43193 + 0.79885I
u = 1.180120 0.268597I
a = 0.281371 1.128550I
b = 0
0.604279 + 1.131230I 2.43193 0.79885I
u = 0.108090 + 0.747508I
a = 0.208670 0.825203I
b = 0
3.80435 2.57849I 5.57469 + 3.25625I
u = 0.108090 0.747508I
a = 0.208670 + 0.825203I
b = 0
3.80435 + 2.57849I 5.57469 3.25625I
u = 1.37100
a = 0.829189
b = 0
4.85780 8.00600
u = 1.334530 + 0.318930I
a = 0.284386 + 0.605794I
b = 0
0.73474 + 6.44354I 0.28408 3.92092I
u = 1.334530 0.318930I
a = 0.284386 0.605794I
b = 0
0.73474 6.44354I 0.28408 + 3.92092I
u = 0.463640
a = 2.74744
b = 0
0.799899 11.5750
15
III. I
u
3
= hb
2
+ b 1, a + 1, u 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
1
a
5
=
1
1
a
9
=
1
0
a
6
=
0
1
a
12
=
1
b
a
10
=
b 1
b + 1
a
1
=
0
b + 1
a
7
=
0
1
a
11
=
b 1
b
a
3
=
0
b + 1
a
2
=
0
b + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 9
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
u
2
c
3
, c
12
u
2
+ u 1
c
4
, c
5
(u 1)
2
c
8
(u + 1)
2
c
9
, c
10
, c
11
u
2
u 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
y
2
c
3
, c
9
, c
10
c
11
, c
12
y
2
3y + 1
c
4
, c
5
, c
8
(y 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0.618034
0.657974 9.00000
u = 1.00000
a = 1.00000
b = 1.61803
7.23771 9.00000
19
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
2
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
· (u
70
+ 18u
69
+ ··· + 392u + 16)
c
2
u
2
(u
8
u
7
+ ··· + 2u 1)(u
70
2u
69
+ ··· 4u + 4)
c
3
u
8
(u
2
+ u 1)(u
70
2u
69
+ ··· 128u + 256)
c
4
, c
5
(u 1)
2
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
· (u
70
4u
69
+ ··· + 12u + 1)
c
6
u
2
(u
8
+ u
7
+ ··· 2u 1)(u
70
2u
69
+ ··· 4u + 4)
c
7
u
2
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
· (u
70
+ 18u
69
+ ··· + 392u + 16)
c
8
(u + 1)
2
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
· (u
70
4u
69
+ ··· + 12u + 1)
c
9
, c
10
((u + 1)
8
)(u
2
u 1)(u
70
+ 10u
69
+ ··· u + 1)
c
11
u
8
(u
2
u 1)(u
70
2u
69
+ ··· 128u + 256)
c
12
((u 1)
8
)(u
2
+ u 1)(u
70
+ 10u
69
+ ··· u + 1)
20
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
y
2
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
· (y
70
+ 66y
69
+ ··· 11552y + 256)
c
2
, c
6
y
2
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
· (y
70
18y
69
+ ··· 392y + 16)
c
3
, c
11
y
8
(y
2
3y + 1)(y
70
54y
69
+ ··· 573440y + 65536)
c
4
, c
5
, c
8
(y 1)
2
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· (y
70
56y
69
+ ··· 16y + 1)
c
9
, c
10
, c
12
((y 1)
8
)(y
2
3y + 1)(y
70
74y
69
+ ··· 29y + 1)
21