10
63
(K10a
51
)
A knot diagram
1
Linearized knot diagam
5 10 9 6 2 8 1 4 3 7
Solving Sequence
4,8
9 3 10
1,2
7 6 5
c
8
c
3
c
9
c
2
c
7
c
6
c
4
c
1
, c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
12
+ 2u
11
+ 9u
10
+ 14u
9
+ 29u
8
+ 34u
7
+ 40u
6
+ 32u
5
+ 20u
4
+ 7u
3
u
2
+ b 2u 1,
u
12
3u
11
10u
10
21u
9
35u
8
51u
7
52u
6
48u
5
29u
4
11u
3
2u
2
+ 2a + 2u,
u
13
+ 3u
12
+ 12u
11
+ 25u
10
+ 51u
9
+ 75u
8
+ 96u
7
+ 96u
6
+ 77u
5
+ 45u
4
+ 16u
3
4u 2i
I
u
2
= h−2u
8
a + 2u
8
+ ··· 4a + 3,
u
7
+ u
5
a + u
6
2u
4
a 5u
5
+ 4u
3
a + 5u
4
6u
2
a 8u
3
+ a
2
+ 3au + 7u
2
2a 4u + 2,
u
9
u
8
+ 6u
7
5u
6
+ 11u
5
7u
4
+ 6u
3
2u
2
+ u 1i
I
u
3
= hb + 1, 2a u, u
2
+ 2i
I
v
1
= ha, b 1, v + 1i
* 4 irreducible components of dim
C
= 0, with total 34 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
12
+2u
11
+· · ·+b1, u
12
3u
11
+· · ·+2a+2u, u
13
+3u
12
+· · ·4u2i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
1
2
u
12
+
3
2
u
11
+ ··· + u
2
u
u
12
2u
11
+ ··· + 2u + 1
a
2
=
u
3
+ 2u
u
5
+ 3u
3
+ u
a
7
=
1
2
u
12
+
3
2
u
11
+ ··· 2u 1
u
8
+ u
7
+ 5u
6
+ 4u
5
+ 7u
4
+ 4u
3
+ 2u
2
1
a
6
=
1
2
u
12
+
3
2
u
11
+ ··· 2u 2
u
8
+ u
7
+ 5u
6
+ 4u
5
+ 7u
4
+ 4u
3
+ 2u
2
1
a
5
=
1
2
u
12
+
3
2
u
11
+ ··· 2u 2
u
9
+ u
8
+ 6u
7
+ 5u
6
+ 11u
5
+ 7u
4
+ 6u
3
+ 2u
2
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
12
+6u
11
+24u
10
+52u
9
+100u
8
+154u
7
+174u
6
+174u
5
+108u
4
+46u
3
4u
2
14u16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
7
c
10
u
13
+ u
12
+ ··· + u + 1
c
2
, c
3
, c
8
c
9
u
13
3u
12
+ ··· 4u + 2
c
4
, c
6
u
13
+ 5u
12
+ ··· + 9u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
c
10
y
13
5y
12
+ ··· + 9y 1
c
2
, c
3
, c
8
c
9
y
13
+ 15y
12
+ ··· + 16y 4
c
4
, c
6
y
13
+ 11y
12
+ ··· + 25y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.138146 + 0.948701I
a = 0.317222 + 0.611463I
b = 0.644264 0.592137I
2.65637 1.35876I 4.47319 + 3.17078I
u = 0.138146 0.948701I
a = 0.317222 0.611463I
b = 0.644264 + 0.592137I
2.65637 + 1.35876I 4.47319 3.17078I
u = 0.578420 + 0.729059I
a = 0.85431 1.51986I
b = 1.089570 + 0.623417I
0.00714 + 8.67404I 9.53036 8.43648I
u = 0.578420 0.729059I
a = 0.85431 + 1.51986I
b = 1.089570 0.623417I
0.00714 8.67404I 9.53036 + 8.43648I
u = 0.694065 + 0.222366I
a = 0.835992 + 0.144863I
b = 0.982157 + 0.559210I
1.52198 4.38846I 11.77625 + 4.32757I
u = 0.694065 0.222366I
a = 0.835992 0.144863I
b = 0.982157 0.559210I
1.52198 + 4.38846I 11.77625 4.32757I
u = 0.063059 + 1.278080I
a = 0.069487 + 0.291937I
b = 0.750183 0.366139I
2.83101 1.40076I 6.04773 + 4.90140I
u = 0.063059 1.278080I
a = 0.069487 0.291937I
b = 0.750183 + 0.366139I
2.83101 + 1.40076I 6.04773 4.90140I
u = 0.400549
a = 0.898581
b = 0.421510
0.714503 13.6630
u = 0.17430 + 1.61896I
a = 0.03628 + 1.72509I
b = 1.168160 0.683587I
7.93590 + 11.51170I 7.17210 6.84034I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.17430 1.61896I
a = 0.03628 1.72509I
b = 1.168160 + 0.683587I
7.93590 11.51170I 7.17210 + 6.84034I
u = 0.05229 + 1.64838I
a = 0.642426 1.259340I
b = 0.622947 + 0.904317I
11.49220 0.51506I 3.16885 + 2.03529I
u = 0.05229 1.64838I
a = 0.642426 + 1.259340I
b = 0.622947 0.904317I
11.49220 + 0.51506I 3.16885 2.03529I
6
II.
I
u
2
= h−2u
8
a + 2u
8
+· · · 4a +3, u
7
+u
6
+· · · 2a +2, u
9
u
8
+· · · +u 1i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
u
2
a
3
=
u
u
3
+ u
a
10
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
a
2u
8
a 2u
8
+ ··· + 4a 3
a
2
=
u
3
+ 2u
u
5
+ 3u
3
+ u
a
7
=
2u
8
a + 2u
8
+ ··· 3a + 3
3u
8
a + 3u
8
+ ··· 5a + 4
a
6
=
5u
8
a + 5u
8
+ ··· 8a + 7
3u
8
a + 3u
8
+ ··· 5a + 4
a
5
=
2u
8
a 2u
8
+ ··· + 3a 2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ 4u
6
20u
5
+ 16u
4
28u
3
+ 16u
2
8u 6
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
7
c
10
u
18
+ u
17
+ ··· + 4u + 3
c
2
, c
3
, c
8
c
9
(u
9
+ u
8
+ 6u
7
+ 5u
6
+ 11u
5
+ 7u
4
+ 6u
3
+ 2u
2
+ u + 1)
2
c
4
, c
6
u
18
+ 9u
17
+ ··· + 40u + 9
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
c
10
y
18
9y
17
+ ··· 40y + 9
c
2
, c
3
, c
8
c
9
(y
9
+ 11y
8
+ 48y
7
+ 105y
6
+ 121y
5
+ 73y
4
+ 20y
3
6y
2
3y 1)
2
c
4
, c
6
y
18
y
17
+ ··· + 524y + 81
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.429032 + 0.787939I
a = 0.559116 0.339074I
b = 0.444651 + 0.766223I
1.87293 3.41073I 6.11762 + 4.39642I
u = 0.429032 + 0.787939I
a = 0.47019 + 1.53024I
b = 0.935577 0.603792I
1.87293 3.41073I 6.11762 + 4.39642I
u = 0.429032 0.787939I
a = 0.559116 + 0.339074I
b = 0.444651 0.766223I
1.87293 + 3.41073I 6.11762 4.39642I
u = 0.429032 0.787939I
a = 0.47019 1.53024I
b = 0.935577 + 0.603792I
1.87293 + 3.41073I 6.11762 4.39642I
u = 0.590618
a = 0.834260 + 0.039950I
b = 0.640279 + 0.479450I
0.453072 10.3330
u = 0.590618
a = 0.834260 0.039950I
b = 0.640279 0.479450I
0.453072 10.3330
u = 0.290170 + 0.487341I
a = 1.066630 + 0.144171I
b = 1.174710 + 0.153689I
3.25448 + 1.10969I 11.44626 6.23947I
u = 0.290170 + 0.487341I
a = 0.06769 3.10644I
b = 0.943806 + 0.303030I
3.25448 + 1.10969I 11.44626 6.23947I
u = 0.290170 0.487341I
a = 1.066630 0.144171I
b = 1.174710 0.153689I
3.25448 1.10969I 11.44626 + 6.23947I
u = 0.290170 0.487341I
a = 0.06769 + 3.10644I
b = 0.943806 0.303030I
3.25448 1.10969I 11.44626 + 6.23947I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.05587 + 1.55975I
a = 0.1256620 + 0.0280657I
b = 1.339950 0.113954I
3.77376 + 2.21388I 7.75885 3.04598I
u = 0.05587 + 1.55975I
a = 0.77131 + 1.94759I
b = 0.857711 0.553032I
3.77376 + 2.21388I 7.75885 3.04598I
u = 0.05587 1.55975I
a = 0.1256620 0.0280657I
b = 1.339950 + 0.113954I
3.77376 2.21388I 7.75885 + 3.04598I
u = 0.05587 1.55975I
a = 0.77131 1.94759I
b = 0.857711 + 0.553032I
3.77376 2.21388I 7.75885 + 3.04598I
u = 0.12170 + 1.63384I
a = 0.664164 + 1.104630I
b = 0.437217 0.966793I
10.17130 5.50049I 4.51063 + 2.97298I
u = 0.12170 + 1.63384I
a = 0.24771 1.68585I
b = 1.054070 + 0.732497I
10.17130 5.50049I 4.51063 + 2.97298I
u = 0.12170 1.63384I
a = 0.664164 1.104630I
b = 0.437217 + 0.966793I
10.17130 + 5.50049I 4.51063 2.97298I
u = 0.12170 1.63384I
a = 0.24771 + 1.68585I
b = 1.054070 0.732497I
10.17130 + 5.50049I 4.51063 2.97298I
11
III. I
u
3
= hb + 1, 2a u, u
2
+ 2i
(i) Arc colorings
a
4
=
0
u
a
8
=
1
0
a
9
=
1
2
a
3
=
u
u
a
10
=
1
0
a
1
=
1
2
u
1
a
2
=
0
u
a
7
=
1
2
u + 1
1
a
6
=
1
2
u
1
a
5
=
1
2
u
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u + 1)
2
c
2
, c
3
, c
8
c
9
u
2
+ 2
c
4
, c
5
, c
6
c
10
(u 1)
2
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
7
, c
10
(y 1)
2
c
2
, c
3
, c
8
c
9
(y + 2)
2
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.414210I
a = 0.707107I
b = 1.00000
1.64493 12.0000
u = 1.414210I
a = 0.707107I
b = 1.00000
1.64493 12.0000
15
IV. I
v
1
= ha, b 1, v + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
1
0
a
9
=
1
0
a
3
=
1
0
a
10
=
1
0
a
1
=
0
1
a
2
=
1
0
a
7
=
1
1
a
6
=
0
1
a
5
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
4
, c
6
c
7
u 1
c
2
, c
3
, c
8
c
9
u
c
5
, c
10
u + 1
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
4
, c
5
c
6
, c
7
, c
10
y 1
c
2
, c
3
, c
8
c
9
y
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
(u 1)(u + 1)
2
(u
13
+ u
12
+ ··· + u + 1)(u
18
+ u
17
+ ··· + 4u + 3)
c
2
, c
3
, c
8
c
9
u(u
2
+ 2)(u
9
+ u
8
+ 6u
7
+ 5u
6
+ 11u
5
+ 7u
4
+ 6u
3
+ 2u
2
+ u + 1)
2
· (u
13
3u
12
+ ··· 4u + 2)
c
4
, c
6
((u 1)
3
)(u
13
+ 5u
12
+ ··· + 9u + 1)(u
18
+ 9u
17
+ ··· + 40u + 9)
c
5
, c
10
((u 1)
2
)(u + 1)(u
13
+ u
12
+ ··· + u + 1)(u
18
+ u
17
+ ··· + 4u + 3)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
7
c
10
((y 1)
3
)(y
13
5y
12
+ ··· + 9y 1)(y
18
9y
17
+ ··· 40y + 9)
c
2
, c
3
, c
8
c
9
y(y + 2)
2
· (y
9
+ 11y
8
+ 48y
7
+ 105y
6
+ 121y
5
+ 73y
4
+ 20y
3
6y
2
3y 1)
2
· (y
13
+ 15y
12
+ ··· + 16y 4)
c
4
, c
6
((y 1)
3
)(y
13
+ 11y
12
+ ··· + 25y 1)(y
18
y
17
+ ··· + 524y + 81)
21