12a
0679
(K12a
0679
)
A knot diagram
1
Linearized knot diagam
3 7 11 10 9 2 12 6 5 4 1 8
Solving Sequence
5,10
4
1,11
12 3 2 9 6 8 7
c
4
c
10
c
11
c
3
c
1
c
9
c
5
c
8
c
7
c
2
, c
6
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
15
+ 2u
14
+ ··· + b 1, u
18
+ 3u
17
+ ··· + 2a 4, u
19
+ 3u
18
+ ··· 6u 2i
I
u
2
= h−7u
12
a + 12u
12
+ ··· 4a 9, u
10
a + u
11
+ ··· + a 1,
u
13
u
12
+ 10u
11
9u
10
+ 37u
9
29u
8
+ 62u
7
40u
6
+ 46u
5
22u
4
+ 12u
3
3u
2
+ u 1i
I
u
3
= hb + u 2, 3a + 2u 3, u
2
+ 3i
I
u
4
= hb u, a 1, u
2
+ 1i
I
v
1
= ha, b + 1, v + 1i
* 5 irreducible components of dim
C
= 0, with total 50 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
15
+2u
14
+· · ·+b1, u
18
+3u
17
+· · ·+2a4, u
19
+3u
18
+· · ·6u2i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
1
=
1
2
u
18
3
2
u
17
+ ··· +
7
2
u + 2
u
15
2u
14
+ ··· + 2u + 1
a
11
=
u
u
3
+ u
a
12
=
1
2
u
18
+
3
2
u
17
+ ···
9
2
u 2
u
16
+ 2u
15
+ ··· u 1
a
3
=
u
2
+ 1
u
4
2u
2
a
2
=
1
2
u
18
3
2
u
17
+ ··· +
7
2
u + 1
u
16
2u
15
+ ··· + 2u + 1
a
9
=
u
u
a
6
=
u
2
+ 1
u
2
a
8
=
u
3
+ 2u
u
3
+ u
a
7
=
1
2
u
18
+
3
2
u
17
+ ···
7
2
u 1
u
14
2u
13
+ ··· + u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
18
+ 6u
17
+ 36u
16
+ 86u
15
+ 264u
14
+ 506u
13
+ 1022u
12
+ 1566u
11
+ 2248u
10
+
2704u
9
+ 2794u
8
+ 2526u
7
+ 1806u
6
+ 1106u
5
+ 464u
4
+ 122u
3
16u
2
28u 20
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
19
+ 7u
18
+ ··· + 13u + 1
c
2
, c
6
, c
7
c
12
u
19
u
18
+ ··· + u + 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
19
3u
18
+ ··· 6u + 2
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
19
+ 17y
18
+ ··· + 37y 1
c
2
, c
6
, c
7
c
12
y
19
7y
18
+ ··· + 13y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
19
+ 27y
18
+ ··· + 24y 4
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.273151 + 0.815941I
a = 0.390307 0.220948I
b = 0.608791 + 0.652934I
1.82620 1.77807I 6.92820 + 2.34039I
u = 0.273151 0.815941I
a = 0.390307 + 0.220948I
b = 0.608791 0.652934I
1.82620 + 1.77807I 6.92820 2.34039I
u = 0.077265 + 0.786380I
a = 0.374812 0.399284I
b = 0.419169 + 0.348987I
1.76915 1.42092I 5.09647 + 5.54292I
u = 0.077265 0.786380I
a = 0.374812 + 0.399284I
b = 0.419169 0.348987I
1.76915 + 1.42092I 5.09647 5.54292I
u = 0.246012 + 1.236810I
a = 1.197950 + 0.527520I
b = 0.428066 0.067299I
5.58686 + 10.56180I 7.44680 7.73425I
u = 0.246012 1.236810I
a = 1.197950 0.527520I
b = 0.428066 + 0.067299I
5.58686 10.56180I 7.44680 + 7.73425I
u = 0.487418 + 0.522631I
a = 0.993393 0.218685I
b = 1.221660 + 0.201552I
0.06851 + 8.01058I 10.52385 9.28102I
u = 0.487418 0.522631I
a = 0.993393 + 0.218685I
b = 1.221660 0.201552I
0.06851 8.01058I 10.52385 + 9.28102I
u = 0.076466 + 1.310960I
a = 0.792972 0.747592I
b = 0.069397 0.530421I
8.75335 0.83971I 3.29462 + 2.18721I
u = 0.076466 1.310960I
a = 0.792972 + 0.747592I
b = 0.069397 + 0.530421I
8.75335 + 0.83971I 3.29462 2.18721I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.550052 + 0.150551I
a = 0.41192 + 1.61654I
b = 0.276507 + 0.224858I
1.18097 4.60134I 13.18408 + 3.99244I
u = 0.550052 0.150551I
a = 0.41192 1.61654I
b = 0.276507 0.224858I
1.18097 + 4.60134I 13.18408 3.99244I
u = 0.308487
a = 0.641715
b = 0.245608
0.592779 16.7390
u = 0.01455 + 1.70648I
a = 0.003380 1.097050I
b = 0.23251 1.76936I
10.80000 1.26776I 5.99488 + 5.70666I
u = 0.01455 1.70648I
a = 0.003380 + 1.097050I
b = 0.23251 + 1.76936I
10.80000 + 1.26776I 5.99488 5.70666I
u = 0.06366 + 1.79454I
a = 2.87448 + 0.37712I
b = 5.52313 + 0.65502I
16.6584 + 11.9628I 6.98346 6.50856I
u = 0.06366 1.79454I
a = 2.87448 0.37712I
b = 5.52313 0.65502I
16.6584 11.9628I 6.98346 + 6.50856I
u = 0.02020 + 1.81069I
a = 1.96350 0.53377I
b = 3.85697 1.33560I
19.1741 0.3767I 3.17814 + 1.98776I
u = 0.02020 1.81069I
a = 1.96350 + 0.53377I
b = 3.85697 + 1.33560I
19.1741 + 0.3767I 3.17814 1.98776I
6
II.
I
u
2
= h−7u
12
a+12u
12
+· · ·4a9, u
10
a+u
11
+· · ·+a1, u
13
u
12
+· · ·+u1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
1
=
a
0.189189au
12
0.324324u
12
+ ··· + 0.108108a + 0.243243
a
11
=
u
u
3
+ u
a
12
=
0.567568au
12
0.0270270u
12
+ ··· + 0.675676a + 0.270270
0.0810811au
12
0.432432u
12
+ ··· 0.189189a + 0.324324
a
3
=
u
2
+ 1
u
4
2u
2
a
2
=
0.108108au
12
+ 0.243243u
12
+ ··· + 0.918919a 0.432432
0.0810811au
12
0.432432u
12
+ ··· 0.189189a + 0.324324
a
9
=
u
u
a
6
=
u
2
+ 1
u
2
a
8
=
u
3
+ 2u
u
3
+ u
a
7
=
0.108108au
12
0.243243u
12
+ ··· 0.918919a + 0.432432
u
11
2u
10
+ ··· + au + u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
11
+ 4u
10
36u
9
+ 32u
8
116u
7
+ 88u
6
160u
5
+ 96u
4
88u
3
+ 36u
2
12u 6
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
11
u
26
+ 13u
25
+ ··· + 385u + 64
c
2
, c
6
, c
7
c
12
u
26
u
25
+ ··· 7u + 8
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(u
13
+ u
12
+ ··· + u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
11
y
26
y
25
+ ··· + 33151y + 4096
c
2
, c
6
, c
7
c
12
y
26
13y
25
+ ··· 385y + 64
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y
13
+ 19y
12
+ ··· 5y 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.083038 + 1.167020I
a = 0.182812 + 0.329365I
b = 0.28373 + 1.50091I
1.55956 + 1.92579I 8.00122 3.82169I
u = 0.083038 + 1.167020I
a = 1.82248 0.57547I
b = 0.180439 0.168950I
1.55956 + 1.92579I 8.00122 3.82169I
u = 0.083038 1.167020I
a = 0.182812 0.329365I
b = 0.28373 1.50091I
1.55956 1.92579I 8.00122 + 3.82169I
u = 0.083038 1.167020I
a = 1.82248 + 0.57547I
b = 0.180439 + 0.168950I
1.55956 1.92579I 8.00122 + 3.82169I
u = 0.179330 + 1.269600I
a = 0.753270 0.865498I
b = 0.137976 0.536137I
7.63579 4.78537I 4.65540 + 3.59229I
u = 0.179330 + 1.269600I
a = 1.148590 + 0.147882I
b = 0.404842 0.185728I
7.63579 4.78537I 4.65540 + 3.59229I
u = 0.179330 1.269600I
a = 0.753270 + 0.865498I
b = 0.137976 + 0.536137I
7.63579 + 4.78537I 4.65540 3.59229I
u = 0.179330 1.269600I
a = 1.148590 0.147882I
b = 0.404842 + 0.185728I
7.63579 + 4.78537I 4.65540 3.59229I
u = 0.379427 + 0.590112I
a = 0.841955 0.244681I
b = 1.020470 + 0.268374I
1.59236 2.83275I 7.00318 + 5.17990I
u = 0.379427 + 0.590112I
a = 0.330450 0.407996I
b = 0.615126 + 0.383997I
1.59236 2.83275I 7.00318 + 5.17990I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.379427 0.590112I
a = 0.841955 + 0.244681I
b = 1.020470 0.268374I
1.59236 + 2.83275I 7.00318 5.17990I
u = 0.379427 0.590112I
a = 0.330450 + 0.407996I
b = 0.615126 0.383997I
1.59236 + 2.83275I 7.00318 5.17990I
u = 0.485085
a = 0.500820 + 1.088090I
b = 0.327558 + 0.106231I
0.173769 11.9170
u = 0.485085
a = 0.500820 1.088090I
b = 0.327558 0.106231I
0.173769 11.9170
u = 0.245118 + 0.346982I
a = 0.833919 + 0.205281I
b = 1.26442 + 0.90129I
3.34890 + 0.88691I 13.3039 7.8258I
u = 0.245118 + 0.346982I
a = 0.69156 + 3.05215I
b = 0.067874 + 0.176233I
3.34890 + 0.88691I 13.3039 7.8258I
u = 0.245118 0.346982I
a = 0.833919 0.205281I
b = 1.26442 0.90129I
3.34890 0.88691I 13.3039 + 7.8258I
u = 0.245118 0.346982I
a = 0.69156 3.05215I
b = 0.067874 0.176233I
3.34890 0.88691I 13.3039 + 7.8258I
u = 0.01838 + 1.78025I
a = 0.031468 1.234190I
b = 0.01017 1.63025I
12.36340 + 2.35177I 7.64300 2.76650I
u = 0.01838 + 1.78025I
a = 3.09176 0.79285I
b = 6.07832 1.71326I
12.36340 + 2.35177I 7.64300 2.76650I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.01838 1.78025I
a = 0.031468 + 1.234190I
b = 0.01017 + 1.63025I
12.36340 2.35177I 7.64300 + 2.76650I
u = 0.01838 1.78025I
a = 3.09176 + 0.79285I
b = 6.07832 + 1.71326I
12.36340 2.35177I 7.64300 + 2.76650I
u = 0.04523 + 1.80316I
a = 1.62778 0.56147I
b = 3.25509 1.42971I
18.9406 5.8171I 4.43476 + 2.75393I
u = 0.04523 + 1.80316I
a = 2.78489 + 0.06061I
b = 5.37092 0.01991I
18.9406 5.8171I 4.43476 + 2.75393I
u = 0.04523 1.80316I
a = 1.62778 + 0.56147I
b = 3.25509 + 1.42971I
18.9406 + 5.8171I 4.43476 2.75393I
u = 0.04523 1.80316I
a = 2.78489 0.06061I
b = 5.37092 + 0.01991I
18.9406 + 5.8171I 4.43476 2.75393I
12
III. I
u
3
= hb + u 2, 3a + 2u 3, u
2
+ 3i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
4
=
1
3
a
1
=
2
3
u + 1
u + 2
a
11
=
u
2u
a
12
=
5
3
u + 1
3u + 2
a
3
=
2
3
a
2
=
2
3
u 1
u 1
a
9
=
u
u
a
6
=
2
3
a
8
=
u
2u
a
7
=
2
3
u 1
u 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
(u 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
+ 3
c
6
, c
12
(u + 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y + 3)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.73205I
a = 1.00000 1.15470I
b = 2.00000 1.73205I
9.86960 12.0000
u = 1.73205I
a = 1.00000 + 1.15470I
b = 2.00000 + 1.73205I
9.86960 12.0000
16
IV. I
u
4
= hb u, a 1, u
2
+ 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
0
u
a
4
=
1
1
a
1
=
1
u
a
11
=
u
0
a
12
=
u + 1
u
a
3
=
0
1
a
2
=
1
u + 1
a
9
=
u
u
a
6
=
0
1
a
8
=
u
0
a
7
=
1
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
11
c
12
(u 1)
2
c
2
, c
7
(u + 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
2
+ 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
(y 1)
2
c
3
, c
4
, c
5
c
8
, c
9
, c
10
(y + 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.00000
b = 1.000000I
0 12.0000
u = 1.000000I
a = 1.00000
b = 1.000000I
0 12.0000
20
V. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
1
0
a
4
=
1
0
a
1
=
0
1
a
11
=
1
0
a
12
=
1
1
a
3
=
1
0
a
2
=
1
1
a
9
=
1
0
a
6
=
1
0
a
8
=
1
0
a
7
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
7
c
11
u 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u
c
6
, c
12
u + 1
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
11
, c
12
y 1
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
24
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
11
((u 1)
5
)(u
19
+ 7u
18
+ ··· + 13u + 1)(u
26
+ 13u
25
+ ··· + 385u + 64)
c
2
, c
7
((u 1)
3
)(u + 1)
2
(u
19
u
18
+ ··· + u + 1)(u
26
u
25
+ ··· 7u + 8)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
u(u
2
+ 1)(u
2
+ 3)(u
13
+ u
12
+ ··· + u + 1)
2
(u
19
3u
18
+ ··· 6u + 2)
c
6
, c
12
((u 1)
2
)(u + 1)
3
(u
19
u
18
+ ··· + u + 1)(u
26
u
25
+ ··· 7u + 8)
25
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
11
((y 1)
5
)(y
19
+ 17y
18
+ ··· + 37y 1)
· (y
26
y
25
+ ··· + 33151y + 4096)
c
2
, c
6
, c
7
c
12
((y 1)
5
)(y
19
7y
18
+ ··· + 13y 1)(y
26
13y
25
+ ··· 385y + 64)
c
3
, c
4
, c
5
c
8
, c
9
, c
10
y(y + 1)
2
(y + 3)
2
(y
13
+ 19y
12
+ ··· 5y 1)
2
· (y
19
+ 27y
18
+ ··· + 24y 4)
26