12a
0682
(K12a
0682
)
A knot diagram
1
Linearized knot diagam
3 7 11 12 9 8 2 6 1 5 4 10
Solving Sequence
2,8
7 3 1 6 9 10 5 11 12 4
c
7
c
2
c
1
c
6
c
8
c
9
c
5
c
10
c
12
c
4
c
3
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
53
+ u
52
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 53 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
53
+ u
52
+ · · · + u + 1i
(i) Arc colorings
a
2
=
0
u
a
8
=
1
0
a
7
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
6
=
u
2
+ 1
u
2
a
9
=
u
4
+ u
2
+ 1
u
4
a
10
=
u
12
u
10
3u
8
2u
6
+ u
2
+ 1
u
14
2u
12
5u
10
6u
8
6u
6
2u
4
u
2
a
5
=
u
6
+ u
4
+ 2u
2
+ 1
u
6
+ u
2
a
11
=
u
26
+ 3u
24
+ ··· + 3u
2
+ 1
u
26
+ 2u
24
+ ··· u
6
u
2
a
12
=
u
21
+ 2u
19
+ 7u
17
+ 10u
15
+ 14u
13
+ 12u
11
+ 5u
9
2u
7
5u
5
2u
3
u
u
23
+ 3u
21
+ ··· + 2u
3
+ u
a
4
=
u
50
5u
48
+ ··· + 3u
2
+ 1
u
52
6u
50
+ ··· 26u
6
7u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
51
4u
50
+ ··· 16u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
8
u
53
+ 11u
52
+ ··· 5u 1
c
2
, c
7
u
53
+ u
52
+ ··· + u + 1
c
3
, c
4
, c
11
u
53
+ u
52
+ ··· + 3u + 1
c
9
, c
12
u
53
+ 9u
52
+ ··· + 857u + 89
c
10
u
53
3u
52
+ ··· 179u 105
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
8
y
53
+ 63y
52
+ ··· 13y 1
c
2
, c
7
y
53
+ 11y
52
+ ··· 5y 1
c
3
, c
4
, c
11
y
53
49y
52
+ ··· 5y 1
c
9
, c
12
y
53
+ 35y
52
+ ··· 196313y 7921
c
10
y
53
13y
52
+ ··· + 120871y 11025
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.457945 + 0.892866I
1.71286 + 2.75389I 6.34294 3.07234I
u = 0.457945 0.892866I
1.71286 2.75389I 6.34294 + 3.07234I
u = 0.572730 + 0.813144I
1.00719 + 4.98869I 3.18777 7.70135I
u = 0.572730 0.813144I
1.00719 4.98869I 3.18777 + 7.70135I
u = 0.429825 + 0.920962I
7.86744 0.15769I 10.16108 + 3.00425I
u = 0.429825 0.920962I
7.86744 + 0.15769I 10.16108 3.00425I
u = 0.490682 + 0.914221I
1.20646 6.61760I 4.55514 + 9.49134I
u = 0.490682 0.914221I
1.20646 + 6.61760I 4.55514 9.49134I
u = 0.493153 + 0.936516I
7.05643 + 9.90285I 8.45292 8.93815I
u = 0.493153 0.936516I
7.05643 9.90285I 8.45292 + 8.93815I
u = 0.036116 + 0.938626I
10.01760 4.89958I 13.7857 + 3.6935I
u = 0.036116 0.938626I
10.01760 + 4.89958I 13.7857 3.6935I
u = 0.575852 + 0.733397I
2.95450 2.17059I 3.89779 + 4.69702I
u = 0.575852 0.733397I
2.95450 + 2.17059I 3.89779 4.69702I
u = 0.023560 + 0.907629I
4.02491 + 1.91090I 10.66650 3.96746I
u = 0.023560 0.907629I
4.02491 1.91090I 10.66650 + 3.96746I
u = 0.610238 + 0.641474I
0.472073 0.554107I 1.056775 + 0.178286I
u = 0.610238 0.641474I
0.472073 + 0.554107I 1.056775 0.178286I
u = 0.217456 + 0.806943I
4.96706 2.01723I 11.79175 + 5.17722I
u = 0.217456 0.806943I
4.96706 + 2.01723I 11.79175 5.17722I
u = 0.661436 + 0.434620I
5.46999 5.61580I 4.48224 + 3.23992I
u = 0.661436 0.434620I
5.46999 + 5.61580I 4.48224 3.23992I
u = 0.618304 + 0.456294I
0.22206 + 2.44713I 0.32336 3.63578I
u = 0.618304 0.456294I
0.22206 2.44713I 0.32336 + 3.63578I
u = 0.876686 + 0.875322I
0.37975 + 3.02773I 0
u = 0.876686 0.875322I
0.37975 3.02773I 0
u = 0.890877 + 0.888837I
6.84069 0.89167I 0
u = 0.890877 0.888837I
6.84069 + 0.89167I 0
u = 0.907804 + 0.877338I
2.05866 + 6.62991I 0
u = 0.907804 0.877338I
2.05866 6.62991I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.903027 + 0.883843I
7.77793 3.11403I 0
u = 0.903027 0.883843I
7.77793 + 3.11403I 0
u = 0.847469 + 0.952356I
0.13857 + 3.36391I 0
u = 0.847469 0.952356I
0.13857 3.36391I 0
u = 0.898144 + 0.916667I
8.05683 + 0.13889I 0
u = 0.898144 0.916667I
8.05683 0.13889I 0
u = 0.862668 + 0.953089I
6.63594 5.59402I 0
u = 0.862668 0.953089I
6.63594 + 5.59402I 0
u = 0.891690 + 0.928721I
11.67710 + 3.29120I 0
u = 0.891690 0.928721I
11.67710 3.29120I 0
u = 0.886770 + 0.940938I
7.97899 6.72566I 0
u = 0.886770 0.940938I
7.97899 + 6.72566I 0
u = 0.866244 + 0.963279I
7.52338 + 9.64804I 0
u = 0.866244 0.963279I
7.52338 9.64804I 0
u = 0.864545 + 0.969690I
1.76241 13.17230I 0
u = 0.864545 0.969690I
1.76241 + 13.17230I 0
u = 0.598640 + 0.307693I
6.03882 3.60466I 5.04712 + 3.30603I
u = 0.598640 0.307693I
6.03882 + 3.60466I 5.04712 3.30603I
u = 0.498225 + 0.373224I
0.283096 + 0.992412I 1.65563 4.45703I
u = 0.498225 0.373224I
0.283096 0.992412I 1.65563 + 4.45703I
u = 0.297051 + 0.536713I
0.193421 + 0.916328I 4.23122 6.90314I
u = 0.297051 0.536713I
0.193421 0.916328I 4.23122 + 6.90314I
u = 0.443543
2.70485 1.55100
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
8
u
53
+ 11u
52
+ ··· 5u 1
c
2
, c
7
u
53
+ u
52
+ ··· + u + 1
c
3
, c
4
, c
11
u
53
+ u
52
+ ··· + 3u + 1
c
9
, c
12
u
53
+ 9u
52
+ ··· + 857u + 89
c
10
u
53
3u
52
+ ··· 179u 105
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
8
y
53
+ 63y
52
+ ··· 13y 1
c
2
, c
7
y
53
+ 11y
52
+ ··· 5y 1
c
3
, c
4
, c
11
y
53
49y
52
+ ··· 5y 1
c
9
, c
12
y
53
+ 35y
52
+ ··· 196313y 7921
c
10
y
53
13y
52
+ ··· + 120871y 11025
8