10
64
(K10a
122
)
A knot diagram
1
Linearized knot diagam
6 9 7 8 1 10 4 2 3 5
Solving Sequence
3,7
4 8
5,10
6 9 2 1
c
3
c
7
c
4
c
6
c
9
c
2
c
1
c
5
, c
8
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, u
10
u
9
+ 6u
8
+ 5u
7
12u
6
6u
5
+ 7u
4
4u
3
+ u
2
+ 2a + 6u + 1,
u
12
+ u
11
7u
10
6u
9
+ 18u
8
+ 11u
7
19u
6
2u
5
+ 6u
4
8u
3
+ 1i
I
u
2
= h−79u
15
74u
14
+ ··· + 47b 143, 126u
15
+ 121u
14
+ ··· + 47a + 425, u
16
+ u
15
+ ··· + 6u 1i
I
u
3
= hb + 1, a, u 1i
I
u
4
= hb 1, a
2
2, u + 1i
* 4 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
10
u
9
+ · · · + 2a + 1, u
12
+ u
11
+ · · · 8u
3
+ 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
8
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
1
2
u
10
+
1
2
u
9
+ ··· 3u
1
2
u
a
6
=
1
2
u
11
7
2
u
9
+ ···
1
2
u
1
2
1
2
u
10
1
2
u
9
+ ··· + u +
1
2
a
9
=
1
2
u
10
+
1
2
u
9
+ ··· 2u
1
2
u
a
2
=
1
2
u
11
1
2
u
10
+ ··· +
1
2
u + 1
u
2
a
1
=
1
2
u
10
+
1
2
u
9
+ ··· 2u
1
2
1
2
u
10
+
1
2
u
9
+ ··· + u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 2u
11
u
10
+ 15u
9
+ 4u
8
41u
7
+ 2u
6
+ 46u
5
25u
4
14u
3
+ 23u
2
4u 1
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
10
u
12
+ 3u
11
+ ··· + 2u 2
c
2
, c
3
, c
4
c
7
, c
8
, c
9
u
12
+ u
11
7u
10
6u
9
+ 18u
8
+ 11u
7
19u
6
2u
5
+ 6u
4
8u
3
+ 1
c
6
u
12
9u
11
+ ··· + 102u 22
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
10
y
12
11y
11
+ ··· + 20y + 4
c
2
, c
3
, c
4
c
7
, c
8
, c
9
y
12
15y
11
+ ··· + 12y
2
+ 1
c
6
y
12
+ y
11
+ ··· + 1300y + 484
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.298602 + 0.646764I
a = 0.45214 1.66459I
b = 0.298602 + 0.646764I
4.65271 3.28049I 2.99435 + 5.25300I
u = 0.298602 0.646764I
a = 0.45214 + 1.66459I
b = 0.298602 0.646764I
4.65271 + 3.28049I 2.99435 5.25300I
u = 1.37505
a = 1.71226
b = 1.37505
1.04846 6.10990
u = 0.527999
a = 1.99219
b = 0.527999
3.24831 0.826740
u = 1.50349 + 0.33368I
a = 0.268985 1.300570I
b = 1.50349 + 0.33368I
7.04968 + 10.86810I 5.35737 5.74032I
u = 1.50349 0.33368I
a = 0.268985 + 1.300570I
b = 1.50349 0.33368I
7.04968 10.86810I 5.35737 + 5.74032I
u = 1.54202 + 0.13644I
a = 0.585241 0.594215I
b = 1.54202 + 0.13644I
10.10900 + 1.20346I 7.47592 + 0.43067I
u = 1.54202 0.13644I
a = 0.585241 + 0.594215I
b = 1.54202 0.13644I
10.10900 1.20346I 7.47592 0.43067I
u = 0.245576 + 0.368193I
a = 0.577777 1.108910I
b = 0.245576 + 0.368193I
0.111574 + 0.933771I 2.28396 7.38290I
u = 0.245576 0.368193I
a = 0.577777 + 1.108910I
b = 0.245576 0.368193I
0.111574 0.933771I 2.28396 + 7.38290I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.54096 + 0.25161I
a = 0.368549 0.997077I
b = 1.54096 + 0.25161I
12.33390 6.28413I 9.23554 + 3.97965I
u = 1.54096 0.25161I
a = 0.368549 + 0.997077I
b = 1.54096 0.25161I
12.33390 + 6.28413I 9.23554 3.97965I
6
II. I
u
2
= h−79u
15
74u
14
+ · · · + 47b 143, 126u
15
+ 121u
14
+ · · · + 47a +
425, u
16
+ u
15
+ · · · + 6u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
u
a
4
=
1
u
2
a
8
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
2.68085u
15
2.57447u
14
+ ··· + 14.1277u 9.04255
1.68085u
15
+ 1.57447u
14
+ ··· 8.12766u + 3.04255
a
6
=
3.06383u
15
4.08511u
14
+ ··· + 23.5745u 12.1915
0.382979u
15
+ 1.51064u
14
+ ··· 8.44681u + 3.14894
a
9
=
u
15
u
14
+ ··· + 6u 6
1.68085u
15
+ 1.57447u
14
+ ··· 8.12766u + 3.04255
a
2
=
3.04255u
15
+ 4.72340u
14
+ ··· 26.3830u + 11.1277
0.106383u
15
+ 1.19149u
14
+ ··· 7.04255u + 0.680851
a
1
=
1.14894u
15
1.53191u
14
+ ··· + 10.3404u 6.44681
2.04255u
15
+ 2.72340u
14
+ ··· 12.3830u + 4.12766
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4
47
u
15
+
120
47
u
14
+
64
47
u
13
652
47
u
12
+
36
47
u
11
+ 28u
10
856
47
u
9
1120
47
u
8
+
1372
47
u
7
+
364
47
u
6
708
47
u
5
456
47
u
4
+
928
47
u
3
+
412
47
u
2
904
47
u +
270
47
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
10
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
2
c
2
, c
3
, c
4
c
7
, c
8
, c
9
u
16
+ u
15
+ ··· + 6u 1
c
6
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
2
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
10
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
2
c
2
, c
3
, c
4
c
7
, c
8
, c
9
y
16
13y
15
+ ··· 24y + 1
c
6
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
2
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.396638 + 0.883588I
a = 1.00561 + 1.17006I
b = 1.42845 0.22812I
0.91019 6.44354I 2.57155 + 5.29417I
u = 0.396638 0.883588I
a = 1.00561 1.17006I
b = 1.42845 + 0.22812I
0.91019 + 6.44354I 2.57155 5.29417I
u = 0.825972 + 0.646815I
a = 0.646365 + 0.503837I
b = 1.396840 + 0.083857I
2.24921 + 1.13123I 4.58478 0.51079I
u = 0.825972 0.646815I
a = 0.646365 0.503837I
b = 1.396840 0.083857I
2.24921 1.13123I 4.58478 + 0.51079I
u = 0.558144 + 0.766237I
a = 0.792286 + 0.953005I
b = 1.41338 0.10034I
5.44928 + 2.57849I 7.72292 3.56796I
u = 0.558144 0.766237I
a = 0.792286 0.953005I
b = 1.41338 + 0.10034I
5.44928 2.57849I 7.72292 + 3.56796I
u = 0.858124
a = 1.40539
b = 0.240055
3.21286 1.86400
u = 1.15431
a = 0.315320
b = 0.551002
2.44483 0.105540
u = 1.396840 + 0.083857I
a = 0.112641 0.603991I
b = 0.825972 + 0.646815I
2.24921 + 1.13123I 4.58478 0.51079I
u = 1.396840 0.083857I
a = 0.112641 + 0.603991I
b = 0.825972 0.646815I
2.24921 1.13123I 4.58478 + 0.51079I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.41338 + 0.10034I
a = 0.145831 + 0.816217I
b = 0.558144 0.766237I
5.44928 2.57849I 7.72292 + 3.56796I
u = 1.41338 0.10034I
a = 0.145831 0.816217I
b = 0.558144 + 0.766237I
5.44928 + 2.57849I 7.72292 3.56796I
u = 1.42845 + 0.22812I
a = 0.286014 + 0.992605I
b = 0.396638 0.883588I
0.91019 + 6.44354I 2.57155 5.29417I
u = 1.42845 0.22812I
a = 0.286014 0.992605I
b = 0.396638 + 0.883588I
0.91019 6.44354I 2.57155 + 5.29417I
u = 0.551002
a = 0.660569
b = 1.15431
2.44483 0.105540
u = 0.240055
a = 5.02383
b = 0.858124
3.21286 1.86400
11
III. I
u
3
= hb + 1, a, u 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
1
a
4
=
1
1
a
8
=
1
0
a
5
=
0
1
a
10
=
0
1
a
6
=
0
1
a
9
=
1
1
a
2
=
0
1
a
1
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
u
c
2
, c
7
u + 1
c
3
, c
4
, c
8
c
9
u 1
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
y
c
2
, c
3
, c
4
c
7
, c
8
, c
9
y 1
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
15
IV. I
u
4
= hb 1, a
2
2, u + 1i
(i) Arc colorings
a
3
=
1
0
a
7
=
0
1
a
4
=
1
1
a
8
=
1
0
a
5
=
0
1
a
10
=
a
1
a
6
=
2
a 1
a
9
=
a + 1
1
a
2
=
a
1
a
1
=
a
a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
16
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
10
u
2
2
c
2
, c
7
(u 1)
2
c
3
, c
4
, c
8
c
9
(u + 1)
2
17
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
6
c
10
(y 2)
2
c
2
, c
3
, c
4
c
7
, c
8
, c
9
(y 1)
2
18
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.41421
b = 1.00000
1.64493 4.00000
u = 1.00000
a = 1.41421
b = 1.00000
1.64493 4.00000
19
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
10
u(u
2
2)(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
2
· (u
12
+ 3u
11
+ ··· + 2u 2)
c
2
, c
7
(u 1)
2
(u + 1)
· (u
12
+ u
11
7u
10
6u
9
+ 18u
8
+ 11u
7
19u
6
2u
5
+ 6u
4
8u
3
+ 1)
· (u
16
+ u
15
+ ··· + 6u 1)
c
3
, c
4
, c
8
c
9
(u 1)(u + 1)
2
· (u
12
+ u
11
7u
10
6u
9
+ 18u
8
+ 11u
7
19u
6
2u
5
+ 6u
4
8u
3
+ 1)
· (u
16
+ u
15
+ ··· + 6u 1)
c
6
u(u
2
2)(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
2
· (u
12
9u
11
+ ··· + 102u 22)
20
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
5
, c
10
y(y 2)
2
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
2
· (y
12
11y
11
+ ··· + 20y + 4)
c
2
, c
3
, c
4
c
7
, c
8
, c
9
((y 1)
3
)(y
12
15y
11
+ ··· + 12y
2
+ 1)(y
16
13y
15
+ ··· 24y + 1)
c
6
y(y 2)
2
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
2
· (y
12
+ y
11
+ ··· + 1300y + 484)
21