12a
0692
(K12a
0692
)
A knot diagram
1
Linearized knot diagam
3 8 6 7 11 4 2 12 1 5 10 9
Solving Sequence
5,10
11
4,6
7 12
1,3
9 8 2
c
10
c
5
c
6
c
11
c
3
c
9
c
8
c
2
c
1
, c
4
, c
7
, c
12
Ideals for irreducible components
2
of X
par
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
1
= h1645225595u
22
+ 1403326418u
21
+ ··· + 92459847924d + 6684425356,
57765211u
22
+ 603981722u
21
+ ··· + 61639898616c 10033883264,
764605576u
22
+ 1158469312u
21
+ ··· + 46229923962b + 3650149526,
1181950799u
22
+ 2420172188u
21
+ ··· + 61639898616a 56011531544,
u
23
+ 2u
22
+ ··· 4u
2
+ 8i
I
u
2
= h−4u
3
a + 7u
2
a 6u
3
au + 7u
2
+ 7d + 2a 12u + 10,
2u
3
a + 7u
2
a 3u
3
4au + 7u
2
+ 7c + a 6u + 5, u
3
a + 5u
3
+ 2au 7u
2
+ 7b 4a + 3u + 1,
u
3
a + 2u
2
a 2u
3
+ a
2
2au + 4u
2
2u + 1, u
4
2u
3
+ 2u
2
u + 1i
I
u
3
= hu
7
+ u
6
2u
5
u
4
+ 2u
3
+ 2u
2
+ d 2u 1, u
6
u
4
+ 2u
2
+ c 1,
22u
7
a 11u
6
a 20u
7
+ 9u
5
a 10u
6
+ 21u
4
a + 25u
5
14u
3
a + 9u
4
43u
3
+ 37b + 7a + 37u + 40,
4u
7
a + 2u
7
+ ··· + 8a 2, u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1i
I
u
4
= hu
7
c 2u
7
u
5
c u
6
u
4
c + 2u
5
+ 2u
3
c + 2u
4
+ 2u
2
c 3u
3
u
2
+ d 3c + u + 3,
2u
7
c + u
6
c u
7
2u
5
c 3u
4
c + 2u
5
+ 2u
3
c + u
4
+ 2u
2
c 3u
3
+ c
2
u
2
3c + u + 2, u
5
+ u
3
+ b u,
u
3
+ a, u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1i
I
u
5
= hu
7
+ u
6
2u
5
u
4
+ 2u
3
+ 2u
2
+ d 2u 1, u
6
u
4
+ 2u
2
+ c 1, u
5
+ u
3
+ b u, u
3
+ a,
u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1i
I
u
6
= hu
4
a 3u
5
+ u
3
a + u
4
u
2
a + 4u
3
+ au 5u
2
+ d + 2a u + 5,
2u
5
a u
5
2u
3
a + u
4
+ 2u
2
a + 3u
3
+ 2au 3u
2
+ 2c 2a + u + 4,
u
4
a u
5
+ u
4
+ u
3
+ au 2u
2
+ b + u + 2,
3u
5
a u
4
a u
5
+ 3u
3
a u
4
3u
2
a u
3
+ 2a
2
3au + u
2
+ 4a u 2,
u
6
u
5
u
4
+ 3u
3
u
2
2u + 2i
I
v
1
= ha, d + 1, c a + 1, b + 1, v + 1i
I
v
2
= ha, d, c 1, b + 1, v 1i
I
v
3
= hc, d 1, b, a 1, v 1i
I
v
4
= ha, da + c v 1, dv 1, cv v
2
+ a v, b + 1i
* 9 irreducible components of dim
C
= 0, with total 86 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h1.65 × 10
9
u
22
+ 1.40 × 10
9
u
21
+ · · · + 9.25 × 10
10
d + 6.68 ×
10
9
, 5.78 × 10
7
u
22
+ 6 .04 × 10
8
u
21
+ · · · + 6.16 × 10
10
c 1.00 × 10
10
, 7.65 ×
10
8
u
22
+ 1.16 × 10
9
u
21
+ · · · + 4.62 × 10
10
b + 3.65 × 10
9
, 1.18 × 10
9
u
22
+
2.42 × 10
9
u
21
+ · · · + 6.16 × 10
10
a 5.60 × 10
10
, u
23
+ 2u
22
+ · · · 4u
2
+ 8i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
0.000937140u
22
0.00979855u
21
+ ··· 0.137025u + 0.162782
0.0177939u
22
0.0151777u
21
+ ··· + 0.995143u 0.0722954
a
6
=
u
u
3
+ u
a
7
=
0.00986955u
22
0.00319991u
21
+ ··· + 1.12467u 0.141695
0.000912892u
22
0.00272992u
21
+ ··· + 0.908690u + 0.153401
a
12
=
u
2
+ 1
u
2
a
1
=
0.0191751u
22
0.0392631u
21
+ ··· + 0.119456u + 0.908690
0.0165392u
22
0.0250589u
21
+ ··· + 0.141695u 0.0789564
a
3
=
0.00895666u
22
+ 0.000469997u
21
+ ··· 0.215981u + 0.295096
0.0120388u
22
0.00566656u
21
+ ··· + 0.980343u + 0.0138542
a
9
=
0.00903693u
22
+ 0.000279913u
21
+ ··· 0.185021u + 0.995143
0.0116728u
22
+ 0.0144841u
21
+ ··· 0.162782u + 0.00749712
a
8
=
0.00173177u
22
0.0155024u
21
+ ··· 0.175640u + 0.980343
0.0174433u
22
+ 0.0237607u
21
+ ··· 0.295096u + 0.0716533
a
2
=
0.0171752u
22
+ 0.0429380u
21
+ ··· 0.0481132u + 1.21453
0.0545823u
22
+ 0.0631700u
21
+ ··· + 0.915273u + 0.299257
(ii) Obstruction class = 1
(iii) Cusp Shapes =
15567855023
46229923962
u
22
+
8703838979
46229923962
u
21
+ ···
168604101146
23114961981
u +
87470148380
23114961981
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
23
+ 10u
22
+ ··· + 88u + 16
c
2
, c
7
u
23
2u
22
+ ··· + 8u 4
c
3
, c
4
, c
6
c
8
, c
9
, c
12
u
23
+ 2u
22
+ ··· u 1
c
5
, c
10
u
23
2u
22
+ ··· + 4u
2
8
c
11
u
23
6u
22
+ ··· + 64u 64
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
23
+ 6y
22
+ ··· + 1824y 256
c
2
, c
7
y
23
10y
22
+ ··· + 88y 16
c
3
, c
4
, c
6
c
8
, c
9
, c
12
y
23
24y
22
+ ··· 9y 1
c
5
, c
10
y
23
6y
22
+ ··· + 64y 64
c
11
y
23
+ 10y
22
+ ··· 6144y 4096
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.758227 + 0.807207I
a = 0.65983 + 1.27023I
b = 0.027613 + 0.769755I
c = 0.393809 0.363183I
d = 0.468974 0.379047I
5.90461 + 1.36538I 0.279938 0.826772I
u = 0.758227 0.807207I
a = 0.65983 1.27023I
b = 0.027613 0.769755I
c = 0.393809 + 0.363183I
d = 0.468974 + 0.379047I
5.90461 1.36538I 0.279938 + 0.826772I
u = 0.830705 + 0.204801I
a = 0.205779 0.701670I
b = 0.423290 0.486601I
c = 0.049881 0.483602I
d = 0.434396 + 0.280584I
0.25505 + 3.01929I 7.24264 9.08374I
u = 0.830705 0.204801I
a = 0.205779 + 0.701670I
b = 0.423290 + 0.486601I
c = 0.049881 + 0.483602I
d = 0.434396 0.280584I
0.25505 3.01929I 7.24264 + 9.08374I
u = 0.112218 + 1.144740I
a = 0.975240 + 0.062634I
b = 1.392930 + 0.053326I
c = 0.03579 + 1.68894I
d = 0.42369 + 2.68034I
8.23677 2.50119I 13.28602 + 3.12140I
u = 0.112218 1.144740I
a = 0.975240 0.062634I
b = 1.392930 0.053326I
c = 0.03579 1.68894I
d = 0.42369 2.68034I
8.23677 + 2.50119I 13.28602 3.12140I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.561270 + 1.026650I
a = 0.909276 + 0.320219I
b = 1.332320 + 0.271054I
c = 0.15598 + 1.57216I
d = 1.88354 + 1.80349I
5.56899 4.43236I 12.33564 + 2.61344I
u = 0.561270 1.026650I
a = 0.909276 0.320219I
b = 1.332320 0.271054I
c = 0.15598 1.57216I
d = 1.88354 1.80349I
5.56899 + 4.43236I 12.33564 2.61344I
u = 0.972761 + 0.735330I
a = 0.435991 + 1.279060I
b = 0.128148 + 0.852673I
c = 0.356815 0.494380I
d = 0.010338 0.309906I
5.23569 7.16228I 1.72036 + 6.58026I
u = 0.972761 0.735330I
a = 0.435991 1.279060I
b = 0.128148 0.852673I
c = 0.356815 + 0.494380I
d = 0.010338 + 0.309906I
5.23569 + 7.16228I 1.72036 6.58026I
u = 0.701924 + 1.071670I
a = 0.939216 0.403120I
b = 1.355040 0.342624I
c = 0.12877 + 1.51945I
d = 2.42854 + 1.67823I
2.90411 + 9.45510I 9.09507 6.28090I
u = 0.701924 1.071670I
a = 0.939216 + 0.403120I
b = 1.355040 + 0.342624I
c = 0.12877 1.51945I
d = 2.42854 1.67823I
2.90411 9.45510I 9.09507 + 6.28090I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.324650 + 0.201985I
a = 0.528390 0.500497I
b = 1.47880 0.09640I
c = 1.63860 + 0.03463I
d = 0.086473 + 0.947361I
13.75320 2.16453I 16.4022 + 0.8027I
u = 1.324650 0.201985I
a = 0.528390 + 0.500497I
b = 1.47880 + 0.09640I
c = 1.63860 0.03463I
d = 0.086473 0.947361I
13.75320 + 2.16453I 16.4022 0.8027I
u = 1.140080 + 0.732610I
a = 0.00237 + 1.63419I
b = 1.39022 + 0.35769I
c = 1.51711 + 0.10256I
d = 1.19387 + 2.89111I
7.42067 + 10.78250I 12.9034 6.4003I
u = 1.140080 0.732610I
a = 0.00237 1.63419I
b = 1.39022 0.35769I
c = 1.51711 0.10256I
d = 1.19387 2.89111I
7.42067 10.78250I 12.9034 + 6.4003I
u = 1.315590 + 0.366431I
a = 0.378349 + 0.860467I
b = 1.47476 + 0.17549I
c = 1.61416 + 0.05615I
d = 0.05780 + 1.68875I
12.6616 + 7.9478I 14.6243 6.1519I
u = 1.315590 0.366431I
a = 0.378349 0.860467I
b = 1.47476 0.17549I
c = 1.61416 0.05615I
d = 0.05780 1.68875I
12.6616 7.9478I 14.6243 + 6.1519I
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.618010
a = 0.115785
b = 0.535478
c = 0.463967
d = 0.579693
0.841351 11.7320
u = 1.130850 + 0.817356I
a = 0.14112 1.69304I
b = 1.38677 0.40113I
c = 1.49067 + 0.09360I
d = 1.38113 + 3.14130I
4.3220 16.2949I 9.65915 + 9.61437I
u = 1.130850 0.817356I
a = 0.14112 + 1.69304I
b = 1.38677 + 0.40113I
c = 1.49067 0.09360I
d = 1.38113 3.14130I
4.3220 + 16.2949I 9.65915 9.61437I
u = 0.237558 + 0.464767I
a = 1.232230 0.506488I
b = 0.141301 0.223079I
c = 0.1335290 + 0.0041366I
d = 0.413099 + 0.410875I
1.63449 0.53093I 3.85466 + 0.92872I
u = 0.237558 0.464767I
a = 1.232230 + 0.506488I
b = 0.141301 + 0.223079I
c = 0.1335290 0.0041366I
d = 0.413099 0.410875I
1.63449 + 0.53093I 3.85466 0.92872I
9
II. I
u
2
= h−4u
3
a 6u
3
+ · · · + 2a + 10, 2u
3
a 3u
3
+ · · · + a + 5, u
3
a +
5u
3
+ · · · 4a + 1, u
3
a 2u
3
+ · · · + a
2
+ 1, u
4
2u
3
+ 2u
2
u + 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
2
7
u
3
a +
3
7
u
3
+ ···
1
7
a
5
7
4
7
u
3
a +
6
7
u
3
+ ···
2
7
a
10
7
a
6
=
u
u
3
+ u
a
7
=
4
7
u
3
a +
1
7
u
3
+ ··· +
2
7
a
4
7
au + u 1
a
12
=
u
2
+ 1
u
2
a
1
=
a
1
7
u
3
a
5
7
u
3
+ ··· +
4
7
a
1
7
a
3
=
4
7
u
3
a
1
7
u
3
+ ···
2
7
a
3
7
5
7
u
3
a
3
7
u
3
+ ··· +
1
7
a
9
7
a
9
=
2
7
u
3
a +
11
7
u
3
+ ··· +
1
7
a +
5
7
3
7
u
3
a +
6
7
u
3
+ ···
2
7
a +
4
7
a
8
=
1
7
u
3
a +
5
7
u
3
+ ··· +
3
7
a +
1
7
1
7
u
3
a +
5
7
u
3
+ ···
4
7
a +
1
7
a
2
=
8
7
u
3
a
2
7
u
3
+ ··· +
3
7
a +
1
7
2
7
u
3
a
4
7
u
3
+ ··· +
6
7
a
5
7
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u
2
8u + 10
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
4
+ 3u
3
+ 5u
2
+ 3u + 1)
2
c
2
, c
7
(u
4
u
3
u
2
+ u + 1)
2
c
3
, c
4
, c
6
c
8
, c
9
, c
12
u
8
+ u
7
2u
6
2u
5
u
3
+ u
2
+ 2u + 1
c
5
, c
10
(u
4
+ 2u
3
+ 2u
2
+ u + 1)
2
c
11
(u
4
+ 2u
2
+ 3u + 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
4
+ y
3
+ 9y
2
+ y + 1)
2
c
2
, c
7
(y
4
3y
3
+ 5y
2
3y + 1)
2
c
3
, c
4
, c
6
c
8
, c
9
, c
12
y
8
5y
7
+ 8y
6
10y
4
+ 3y
3
+ 5y
2
2y + 1
c
5
, c
10
(y
4
+ 2y
2
+ 3y + 1)
2
c
11
(y
4
+ 4y
3
+ 6y
2
5y + 1)
2
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.070696 + 0.758745I
a = 0.762101 0.037785I
b = 1.213740 0.031383I
c = 0.457945 + 0.239806I
d = 1.13826 + 1.05122I
2.21227 + 1.41376I 7.79581 4.79737I
u = 0.070696 + 0.758745I
a = 1.88384 + 1.34441I
b = 0.521295 + 0.349531I
c = 0.07969 + 1.93284I
d = 0.18895 + 1.45474I
2.21227 + 1.41376I 7.79581 4.79737I
u = 0.070696 0.758745I
a = 0.762101 + 0.037785I
b = 1.213740 + 0.031383I
c = 0.457945 0.239806I
d = 1.13826 1.05122I
2.21227 1.41376I 7.79581 + 4.79737I
u = 0.070696 0.758745I
a = 1.88384 1.34441I
b = 0.521295 0.349531I
c = 0.07969 1.93284I
d = 0.18895 1.45474I
2.21227 1.41376I 7.79581 + 4.79737I
u = 1.070700 + 0.758745I
a = 0.366524 1.338260I
b = 0.162537 0.919710I
c = 1.49950 + 0.12150I
d = 1.45261 + 2.85433I
0.56734 + 11.56320I 6.20419 8.26147I
u = 1.070700 + 0.758745I
a = 0.01173 + 1.77886I
b = 1.354980 + 0.371832I
c = 0.377761 0.546931I
d = 0.220186 0.348363I
0.56734 + 11.56320I 6.20419 8.26147I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.070700 0.758745I
a = 0.366524 + 1.338260I
b = 0.162537 + 0.919710I
c = 1.49950 0.12150I
d = 1.45261 2.85433I
0.56734 11.56320I 6.20419 + 8.26147I
u = 1.070700 0.758745I
a = 0.01173 1.77886I
b = 1.354980 0.371832I
c = 0.377761 + 0.546931I
d = 0.220186 + 0.348363I
0.56734 11.56320I 6.20419 + 8.26147I
14
III. I
u
3
= hu
7
+ u
6
+ · · · + d 1, u
6
u
4
+ 2u
2
+ c 1, 22u
7
a 20u
7
+
· · · + 7a + 40, 4u
7
a + 2u
7
+ · · · + 8a 2, u
8
+ u
7
+ · · · 2u 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
6
+ u
4
2u
2
+ 1
u
7
u
6
+ 2u
5
+ u
4
2u
3
2u
2
+ 2u + 1
a
6
=
u
u
3
+ u
a
7
=
u
4
+ u
2
1
u
4
a
12
=
u
2
+ 1
u
2
a
1
=
a
0.594595au
7
+ 0.540541u
7
+ ··· 0.189189a 1.08108
a
3
=
u
2
+ 1
u
2
a
9
=
0.540541au
7
0.945946u
7
+ ··· + 1.08108a + 1.89189
0.0540541au
7
0.405405u
7
+ ··· 0.108108a + 0.810811
a
8
=
0.594595au
7
0.540541u
7
+ ··· + 1.18919a + 1.08108
0.594595au
7
0.540541u
7
+ ··· + 0.189189a + 1.08108
a
2
=
0.540541au
7
0.0540541u
7
+ ··· + 0.918919a + 0.108108
1.08108au
7
+ 0.891892u
7
+ ··· 0.162162a 1.78378
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ 8u
5
+ 4u
4
8u
3
4u
2
+ 4u + 14
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 9u
15
+ ··· 8u
2
+ 1
c
2
, c
7
, c
8
c
9
, c
12
u
16
u
15
+ ··· + 2u 1
c
3
, c
4
, c
6
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
2
c
5
, c
10
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
2
c
11
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
5y
15
+ ··· 16y + 1
c
2
, c
7
, c
8
c
9
, c
12
y
16
9y
15
+ ··· 8y
2
+ 1
c
3
, c
4
, c
6
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
2
c
5
, c
10
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
2
c
11
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
2
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 0.85267 + 1.13323I
b = 0.097535 + 0.616980I
c = 0.33804 + 1.54318I
d = 1.43432 + 0.96489I
1.04066 + 1.13123I 7.41522 0.51079I
u = 0.570868 + 0.730671I
a = 0.43836 3.06608I
b = 1.082580 0.348383I
c = 0.33804 + 1.54318I
d = 1.43432 + 0.96489I
1.04066 + 1.13123I 7.41522 0.51079I
u = 0.570868 0.730671I
a = 0.85267 1.13323I
b = 0.097535 0.616980I
c = 0.33804 1.54318I
d = 1.43432 0.96489I
1.04066 1.13123I 7.41522 + 0.51079I
u = 0.570868 0.730671I
a = 0.43836 + 3.06608I
b = 1.082580 + 0.348383I
c = 0.33804 1.54318I
d = 1.43432 0.96489I
1.04066 1.13123I 7.41522 + 0.51079I
u = 0.855237 + 0.665892I
a = 0.683988 + 0.514398I
b = 1.134620 + 0.424735I
c = 0.306664 0.427719I
d = 0.233537 0.170925I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.855237 + 0.665892I
a = 0.24547 + 2.30190I
b = 1.242710 + 0.322774I
c = 0.306664 0.427719I
d = 0.233537 0.170925I
2.15941 + 2.57849I 4.27708 3.56796I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.855237 0.665892I
a = 0.683988 0.514398I
b = 1.134620 0.424735I
c = 0.306664 + 0.427719I
d = 0.233537 + 0.170925I
2.15941 2.57849I 4.27708 + 3.56796I
u = 0.855237 0.665892I
a = 0.24547 2.30190I
b = 1.242710 0.322774I
c = 0.306664 + 0.427719I
d = 0.233537 + 0.170925I
2.15941 2.57849I 4.27708 + 3.56796I
u = 1.09818
a = 0.166989 + 0.837022I
b = 0.685501 + 0.640105I
c = 1.71160
d = 0.895847
6.50273 13.8640
u = 1.09818
a = 0.166989 0.837022I
b = 0.685501 0.640105I
c = 1.71160
d = 0.895847
6.50273 13.8640
u = 1.031810 + 0.655470I
a = 0.688737 0.639006I
b = 1.130780 0.529217I
c = 1.53294 + 0.14882I
d = 1.41965 + 2.49301I
2.37968 6.44354I 9.42845 + 5.29417I
u = 1.031810 + 0.655470I
a = 0.351395 + 1.239290I
b = 0.203747 + 0.848147I
c = 1.53294 + 0.14882I
d = 1.41965 + 2.49301I
2.37968 6.44354I 9.42845 + 5.29417I
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.031810 0.655470I
a = 0.688737 + 0.639006I
b = 1.130780 + 0.529217I
c = 1.53294 0.14882I
d = 1.41965 2.49301I
2.37968 + 6.44354I 9.42845 5.29417I
u = 1.031810 0.655470I
a = 0.351395 1.239290I
b = 0.203747 0.848147I
c = 1.53294 0.14882I
d = 1.41965 2.49301I
2.37968 + 6.44354I 9.42845 5.29417I
u = 0.603304
a = 0.0902138
b = 0.684028
c = 0.356309
d = 0.541881
0.845036 11.8940
u = 0.603304
a = 5.62425
b = 1.14767
c = 0.356309
d = 0.541881
0.845036 11.8940
20
IV. I
u
4
= hu
7
c 2u
7
+ · · · 3c + 3, 2u
7
c u
7
+ · · · 3c + 2, u
5
+ u
3
+ b
u, u
3
+ a, u
8
+ u
7
+ · · · 2u 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
c
u
7
c + 2u
7
+ ··· + 3c 3
a
6
=
u
u
3
+ u
a
7
=
u
7
c + 2u
7
+ ··· + 2c 3
u
7
+ u
4
c u
5
u
2
c + 2u
3
cu + 2c u 2
a
12
=
u
2
+ 1
u
2
a
1
=
u
3
u
5
u
3
+ u
a
3
=
u
7
c u
7
u
5
c u
6
+ u
5
+ 2u
3
c + 2u
4
u
3
cu u
2
+ 1
u
7
c + u
7
+ ··· + 3c 2
a
9
=
u
7
2u
5
+ 2u
3
2u
u
7
u
5
+ 2u
3
u
a
8
=
u
u
3
u
a
2
=
c
u
7
c + 2u
7
+ ··· + 3c 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ 8u
5
+ 4u
4
8u
3
4u
2
+ 4u + 14
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
16
+ 9u
15
+ ··· 8u
2
+ 1
c
2
, c
3
, c
4
c
6
, c
7
u
16
u
15
+ ··· + 2u 1
c
5
, c
10
(u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1)
2
c
8
, c
9
, c
12
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
2
c
11
(u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
2
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
16
5y
15
+ ··· 16y + 1
c
2
, c
3
, c
4
c
6
, c
7
y
16
9y
15
+ ··· 8y
2
+ 1
c
5
, c
10
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
2
c
8
, c
9
, c
12
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
2
c
11
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
2
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 0.728286 0.324264I
b = 1.180120 0.268597I
c = 1.338630 + 0.392019I
d = 2.30490 + 2.27899I
1.04066 + 1.13123I 7.41522 0.51079I
u = 0.570868 + 0.730671I
a = 0.728286 0.324264I
b = 1.180120 0.268597I
c = 0.348718 0.235508I
d = 0.684355 0.082854I
1.04066 + 1.13123I 7.41522 0.51079I
u = 0.570868 0.730671I
a = 0.728286 + 0.324264I
b = 1.180120 + 0.268597I
c = 1.338630 0.392019I
d = 2.30490 2.27899I
1.04066 1.13123I 7.41522 + 0.51079I
u = 0.570868 0.730671I
a = 0.728286 + 0.324264I
b = 1.180120 + 0.268597I
c = 0.348718 + 0.235508I
d = 0.684355 + 0.082854I
1.04066 1.13123I 7.41522 + 0.51079I
u = 0.855237 + 0.665892I
a = 0.512122 1.165900I
b = 0.108090 0.747508I
c = 0.259529 + 1.329030I
d = 1.91420 + 0.28957I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.855237 + 0.665892I
a = 0.512122 1.165900I
b = 0.108090 0.747508I
c = 1.50305 + 0.23227I
d = 1.89317 + 2.34673I
2.15941 + 2.57849I 4.27708 3.56796I
24
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.855237 0.665892I
a = 0.512122 + 1.165900I
b = 0.108090 + 0.747508I
c = 0.259529 1.329030I
d = 1.91420 0.28957I
2.15941 2.57849I 4.27708 + 3.56796I
u = 0.855237 0.665892I
a = 0.512122 + 1.165900I
b = 0.108090 + 0.747508I
c = 1.50305 0.23227I
d = 1.89317 2.34673I
2.15941 2.57849I 4.27708 + 3.56796I
u = 1.09818
a = 1.32440
b = 1.37100
c = 0.054797 + 0.799128I
d = 0.635504 0.747497I
6.50273 13.8640
u = 1.09818
a = 1.32440
b = 1.37100
c = 0.054797 0.799128I
d = 0.635504 + 0.747497I
6.50273 13.8640
u = 1.031810 + 0.655470I
a = 0.23143 1.81188I
b = 1.334530 0.318930I
c = 0.164531 + 1.264480I
d = 2.19900 0.17735I
2.37968 6.44354I 9.42845 + 5.29417I
u = 1.031810 + 0.655470I
a = 0.23143 1.81188I
b = 1.334530 0.318930I
c = 0.316450 0.535989I
d = 0.096756 0.127406I
2.37968 6.44354I 9.42845 + 5.29417I
25
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.031810 0.655470I
a = 0.23143 + 1.81188I
b = 1.334530 + 0.318930I
c = 0.164531 1.264480I
d = 2.19900 + 0.17735I
2.37968 + 6.44354I 9.42845 5.29417I
u = 1.031810 0.655470I
a = 0.23143 + 1.81188I
b = 1.334530 + 0.318930I
c = 0.316450 + 0.535989I
d = 0.096756 + 0.127406I
2.37968 + 6.44354I 9.42845 5.29417I
u = 0.603304
a = 0.219587
b = 0.463640
c = 0.775554
d = 0.640533
0.845036 11.8940
u = 0.603304
a = 0.219587
b = 0.463640
c = 2.18322
d = 3.29089
0.845036 11.8940
26
V. I
u
5
= hu
7
+ u
6
+ · · · + d 1, u
6
u
4
+ 2u
2
+ c 1, u
5
+ u
3
+ b
u, u
3
+ a, u
8
+ u
7
+ · · · 2u 1i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
6
+ u
4
2u
2
+ 1
u
7
u
6
+ 2u
5
+ u
4
2u
3
2u
2
+ 2u + 1
a
6
=
u
u
3
+ u
a
7
=
u
4
+ u
2
1
u
4
a
12
=
u
2
+ 1
u
2
a
1
=
u
3
u
5
u
3
+ u
a
3
=
u
2
+ 1
u
2
a
9
=
u
7
2u
5
+ 2u
3
2u
u
7
u
5
+ 2u
3
u
a
8
=
u
u
3
u
a
2
=
u
6
+ u
4
2u
2
+ 1
u
7
u
6
+ 2u
5
+ u
4
2u
3
2u
2
+ 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
+ 8u
5
+ 4u
4
8u
3
4u
2
+ 4u + 14
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 7u
7
+ 19u
6
+ 22u
5
+ 3u
4
14u
3
6u
2
+ 4u + 1
c
2
, c
3
, c
4
c
6
, c
7
, c
8
c
9
, c
12
u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1
c
5
, c
10
u
8
u
7
u
6
+ 2u
5
+ u
4
2u
3
+ 2u 1
c
11
u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
11y
7
+ 59y
6
186y
5
+ 343y
4
370y
3
+ 154y
2
28y + 1
c
2
, c
3
, c
4
c
6
, c
7
, c
8
c
9
, c
12
y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1
c
5
, c
10
y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1
c
11
y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.570868 + 0.730671I
a = 0.728286 0.324264I
b = 1.180120 0.268597I
c = 0.33804 + 1.54318I
d = 1.43432 + 0.96489I
1.04066 + 1.13123I 7.41522 0.51079I
u = 0.570868 0.730671I
a = 0.728286 + 0.324264I
b = 1.180120 + 0.268597I
c = 0.33804 1.54318I
d = 1.43432 0.96489I
1.04066 1.13123I 7.41522 + 0.51079I
u = 0.855237 + 0.665892I
a = 0.512122 1.165900I
b = 0.108090 0.747508I
c = 0.306664 0.427719I
d = 0.233537 0.170925I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.855237 0.665892I
a = 0.512122 + 1.165900I
b = 0.108090 + 0.747508I
c = 0.306664 + 0.427719I
d = 0.233537 + 0.170925I
2.15941 2.57849I 4.27708 + 3.56796I
u = 1.09818
a = 1.32440
b = 1.37100
c = 1.71160
d = 0.895847
6.50273 13.8640
u = 1.031810 + 0.655470I
a = 0.23143 1.81188I
b = 1.334530 0.318930I
c = 1.53294 + 0.14882I
d = 1.41965 + 2.49301I
2.37968 6.44354I 9.42845 + 5.29417I
30
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.031810 0.655470I
a = 0.23143 + 1.81188I
b = 1.334530 + 0.318930I
c = 1.53294 0.14882I
d = 1.41965 2.49301I
2.37968 + 6.44354I 9.42845 5.29417I
u = 0.603304
a = 0.219587
b = 0.463640
c = 0.356309
d = 0.541881
0.845036 11.8940
31
VI. I
u
6
= hu
4
a 3u
5
+ · · · + 2a + 5, 2u
5
a u
5
+ · · · 2a + 4, u
4
a u
5
+
· · · + b + 2, 3u
5
a u
5
+ · · · + 4a 2, u
6
u
5
+ · · · 2u + 2i
(i) Arc colorings
a
5
=
0
u
a
10
=
1
0
a
11
=
1
u
2
a
4
=
u
5
a +
1
2
u
5
+ ··· + a 2
u
4
a + 3u
5
u
3
a u
4
+ u
2
a 4u
3
au + 5u
2
2a + u 5
a
6
=
u
u
3
+ u
a
7
=
3
2
u
5
1
2
u
4
+ ··· a 3
2u
5
3u
3
au + 3u
2
+ u 3
a
12
=
u
2
+ 1
u
2
a
1
=
a
u
4
a + u
5
u
4
u
3
au + 2u
2
u 2
a
3
=
1
2
u
5
+
1
2
u
4
+ ··· + a +
1
2
u
u
5
a + u
5
+ u
3
a u
2
a u
3
au + u
2
1
a
9
=
u
5
a + u
4
a 2u
5
+ 2u
3
a + u
4
2u
2
a + 2u
3
4u
2
+ 3a + 4
u
5
a u
5
+ 2u
3
a 2u
2
a + u
3
au 2u
2
+ 2a u + 2
a
8
=
u
4
a u
5
+ u
4
u
2
a + u
3
+ au 2u
2
+ a + u + 2
u
4
a u
5
+ u
4
u
2
a + u
3
+ au 2u
2
+ u + 2
a
2
=
1
2
u
5
1
2
u
4
+ ··· + 2a
1
2
u
u
5
a + u
5
+ 2u
3
a u
4
2u
2
a u
3
2au + u
2
+ 2a u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
5
4u
4
+ 8u
3
8u + 16
32
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
6
+ 2u
5
+ 3u
4
+ u
3
+ u
2
u + 1)
2
c
2
, c
7
(u
6
u
4
+ u
3
+ u
2
u + 1)
2
c
3
, c
4
, c
6
c
8
, c
9
, c
12
u
12
5u
10
+ 2u
9
+ 9u
8
7u
7
4u
6
+ 7u
5
4u
4
+ 2u
3
+ u
2
4u + 4
c
5
, c
10
(u
6
+ u
5
u
4
3u
3
u
2
+ 2u + 2)
2
c
11
(u
6
3u
5
+ 5u
4
7u
3
+ 9u
2
8u + 4)
2
33
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
6
+ 2y
5
+ 7y
4
+ 11y
3
+ 9y
2
+ y + 1)
2
c
2
, c
7
(y
6
2y
5
+ 3y
4
y
3
+ y
2
+ y + 1)
2
c
3
, c
4
, c
6
c
8
, c
9
, c
12
y
12
10y
11
+ ··· 8y + 16
c
5
, c
10
(y
6
3y
5
+ 5y
4
7y
3
+ 9y
2
8y + 4)
2
c
11
(y
6
+ y
5
+ y
4
+ y
3
+ 9y
2
+ 8y + 16)
2
34
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.954425 + 0.469441I
a = 0.543939 + 0.599164I
b = 1.013300 + 0.485889I
c = 1.61874 + 0.18698I
d = 1.52081 + 1.85766I
4.85214 + 1.71504I 13.36090 1.32670I
u = 0.954425 + 0.469441I
a = 0.84764 + 1.84095I
b = 1.297290 + 0.224098I
c = 0.258456 + 1.158850I
d = 1.61170 0.24019I
4.85214 + 1.71504I 13.36090 1.32670I
u = 0.954425 0.469441I
a = 0.543939 0.599164I
b = 1.013300 0.485889I
c = 1.61874 0.18698I
d = 1.52081 1.85766I
4.85214 1.71504I 13.36090 + 1.32670I
u = 0.954425 0.469441I
a = 0.84764 1.84095I
b = 1.297290 0.224098I
c = 0.258456 1.158850I
d = 1.61170 + 0.24019I
4.85214 1.71504I 13.36090 + 1.32670I
u = 1.130290 + 0.224113I
a = 0.003531 + 0.984620I
b = 0.529009 + 0.730272I
c = 1.67457 + 0.07044I
d = 0.781173 + 0.975415I
6.01369 4.89103I 12.12173 + 6.59162I
u = 1.130290 + 0.224113I
a = 1.023270 0.773208I
b = 1.385610 0.106695I
c = 0.085338 0.700500I
d = 0.199297 + 0.648369I
6.01369 4.89103I 12.12173 + 6.59162I
35
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.130290 0.224113I
a = 0.003531 0.984620I
b = 0.529009 0.730272I
c = 1.67457 0.07044I
d = 0.781173 0.975415I
6.01369 + 4.89103I 12.12173 6.59162I
u = 1.130290 0.224113I
a = 1.023270 + 0.773208I
b = 1.385610 + 0.106695I
c = 0.085338 + 0.700500I
d = 0.199297 0.648369I
6.01369 + 4.89103I 12.12173 6.59162I
u = 0.675862 + 0.935235I
a = 0.855739 + 0.390801I
b = 1.284560 + 0.329038I
c = 0.476837 0.318716I
d = 0.762506 0.547149I
1.81870 5.32947I 4.51738 + 4.54389I
u = 0.675862 + 0.935235I
a = 0.76705 1.38346I
b = 0.143970 0.800673I
c = 0.18887 + 1.51212I
d = 2.06473 + 1.31344I
1.81870 5.32947I 4.51738 + 4.54389I
u = 0.675862 0.935235I
a = 0.855739 0.390801I
b = 1.284560 0.329038I
c = 0.476837 + 0.318716I
d = 0.762506 + 0.547149I
1.81870 + 5.32947I 4.51738 4.54389I
u = 0.675862 0.935235I
a = 0.76705 + 1.38346I
b = 0.143970 + 0.800673I
c = 0.18887 1.51212I
d = 2.06473 1.31344I
1.81870 + 5.32947I 4.51738 4.54389I
36
VII. I
v
1
= ha, d + 1, c a + 1, b + 1, v + 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
1
0
a
11
=
1
0
a
4
=
1
1
a
6
=
1
0
a
7
=
0
1
a
12
=
1
0
a
1
=
0
1
a
3
=
0
1
a
9
=
1
1
a
8
=
0
1
a
2
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
37
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
10
, c
11
u
c
3
, c
4
, c
8
c
9
u + 1
c
6
, c
12
u 1
38
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
7
, c
10
, c
11
y
c
3
, c
4
, c
6
c
8
, c
9
, c
12
y 1
39
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 1.00000
3.28987 12.0000
40
VIII. I
v
2
= ha, d, c 1, b + 1, v 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
1
0
a
11
=
1
0
a
4
=
1
0
a
6
=
1
0
a
7
=
1
0
a
12
=
1
0
a
1
=
0
1
a
3
=
1
0
a
9
=
1
1
a
8
=
0
1
a
2
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
41
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
12
u 1
c
3
, c
4
, c
5
c
6
, c
10
, c
11
u
c
7
, c
8
, c
9
u + 1
42
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
7
c
8
, c
9
, c
12
y 1
c
3
, c
4
, c
5
c
6
, c
10
, c
11
y
43
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
2
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
c = 1.00000
d = 0
0 0
44
IX. I
v
3
= hc, d 1, b, a 1, v 1i
(i) Arc colorings
a
5
=
1
0
a
10
=
1
0
a
11
=
1
0
a
4
=
0
1
a
6
=
1
0
a
7
=
1
1
a
12
=
1
0
a
1
=
1
0
a
3
=
1
1
a
9
=
1
0
a
8
=
1
0
a
2
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
45
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
7
u 1
c
2
, c
3
, c
4
u + 1
c
5
, c
8
, c
9
c
10
, c
11
, c
12
u
46
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
y 1
c
5
, c
8
, c
9
c
10
, c
11
, c
12
y
47
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
3
1(vol +
1CS) Cusp shape
v = 1.00000
a = 1.00000
b = 0
c = 0
d = 1.00000
0 0
48
X. I
v
4
= ha, da + c v 1, dv 1, cv v
2
+ a v, b + 1i
(i) Arc colorings
a
5
=
v
0
a
10
=
1
0
a
11
=
1
0
a
4
=
v + 1
d
a
6
=
v
0
a
7
=
1
d
a
12
=
1
0
a
1
=
0
1
a
3
=
1
d
a
9
=
1
1
a
8
=
0
1
a
2
=
1
d 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = d
2
v
2
+ 8
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
49
(iv) Complex Volumes and Cusp Shapes
Solution to I
v
4
1(vol +
1CS) Cusp shape
v = ···
a = ···
b = ···
c = ···
d = ···
1.64493 8.90487 0.21066I
50
XI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u 1)
2
(u
4
+ 3u
3
+ 5u
2
+ 3u + 1)
2
· (u
6
+ 2u
5
+ 3u
4
+ u
3
+ u
2
u + 1)
2
· (u
8
+ 7u
7
+ 19u
6
+ 22u
5
+ 3u
4
14u
3
6u
2
+ 4u + 1)
· ((u
16
+ 9u
15
+ ··· 8u
2
+ 1)
2
)(u
23
+ 10u
22
+ ··· + 88u + 16)
c
2
, c
7
u(u 1)(u + 1)(u
4
u
3
u
2
+ u + 1)
2
(u
6
u
4
+ u
3
+ u
2
u + 1)
2
· (u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)(u
16
u
15
+ ··· + 2u 1)
2
· (u
23
2u
22
+ ··· + 8u 4)
c
3
, c
4
, c
8
c
9
u(u + 1)
2
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
3
· (u
8
+ u
7
2u
6
2u
5
u
3
+ u
2
+ 2u + 1)
· (u
12
5u
10
+ 2u
9
+ 9u
8
7u
7
4u
6
+ 7u
5
4u
4
+ 2u
3
+ u
2
4u + 4)
· (u
16
u
15
+ ··· + 2u 1)(u
23
+ 2u
22
+ ··· u 1)
c
5
, c
10
u
3
(u
4
+ 2u
3
+ 2u
2
+ u + 1)
2
(u
6
+ u
5
u
4
3u
3
u
2
+ 2u + 2)
2
· ((u
8
u
7
+ ··· + 2u 1)
5
)(u
23
2u
22
+ ··· + 4u
2
8)
c
6
, c
12
u(u 1)
2
(u
8
+ u
7
3u
6
2u
5
+ 3u
4
+ 2u 1)
3
· (u
8
+ u
7
2u
6
2u
5
u
3
+ u
2
+ 2u + 1)
· (u
12
5u
10
+ 2u
9
+ 9u
8
7u
7
4u
6
+ 7u
5
4u
4
+ 2u
3
+ u
2
4u + 4)
· (u
16
u
15
+ ··· + 2u 1)(u
23
+ 2u
22
+ ··· u 1)
c
11
u
3
(u
4
+ 2u
2
+ 3u + 1)
2
(u
6
3u
5
+ 5u
4
7u
3
+ 9u
2
8u + 4)
2
· (u
8
3u
7
+ 7u
6
10u
5
+ 11u
4
10u
3
+ 6u
2
4u + 1)
5
· (u
23
6u
22
+ ··· + 64u 64)
51
XII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y(y 1)
2
(y
4
+ y
3
+ 9y
2
+ y + 1)
2
· (y
6
+ 2y
5
+ 7y
4
+ 11y
3
+ 9y
2
+ y + 1)
2
· (y
8
11y
7
+ 59y
6
186y
5
+ 343y
4
370y
3
+ 154y
2
28y + 1)
· ((y
16
5y
15
+ ··· 16y + 1)
2
)(y
23
+ 6y
22
+ ··· + 1824y 256)
c
2
, c
7
y(y 1)
2
(y
4
3y
3
+ 5y
2
3y + 1)
2
· (y
6
2y
5
+ 3y
4
y
3
+ y
2
+ y + 1)
2
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
· ((y
16
9y
15
+ ··· 8y
2
+ 1)
2
)(y
23
10y
22
+ ··· + 88y 16)
c
3
, c
4
, c
6
c
8
, c
9
, c
12
y(y 1)
2
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
3
· (y
8
5y
7
+ 8y
6
10y
4
+ 3y
3
+ 5y
2
2y + 1)
· (y
12
10y
11
+ ··· 8y + 16)(y
16
9y
15
+ ··· 8y
2
+ 1)
· (y
23
24y
22
+ ··· 9y 1)
c
5
, c
10
y
3
(y
4
+ 2y
2
+ 3y + 1)
2
(y
6
3y
5
+ 5y
4
7y
3
+ 9y
2
8y + 4)
2
· (y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
5
· (y
23
6y
22
+ ··· + 64y 64)
c
11
y
3
(y
4
+ 4y
3
+ 6y
2
5y + 1)
2
(y
6
+ y
5
+ y
4
+ y
3
+ 9y
2
+ 8y + 16)
2
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
5
· (y
23
+ 10y
22
+ ··· 6144y 4096)
52