12a
0701
(K12a
0701
)
A knot diagram
1
Linearized knot diagam
3 8 6 10 1 11 2 12 4 9 7 5
Solving Sequence
2,7
8
3,11
12 9 1 6 4 5 10
c
7
c
2
c
11
c
8
c
1
c
6
c
3
c
5
c
10
c
4
, c
9
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= ⟨−7.70053 × 10
53
u
39
1.74213 × 10
54
u
38
+ ··· + 2.50493 × 10
54
b 1.01102 × 10
54
,
5.17594 × 10
54
u
39
+ 1.38121 × 10
55
u
38
+ ··· + 1.08547 × 10
55
a 8.78741 × 10
53
,
5u
40
+ 15u
39
+ ··· + 4u + 13
I
u
2
= 2u
31
a + 3u
31
+ ··· 2a + 4, 2u
30
a + 16u
31
+ ··· + 2a 15, u
32
u
31
+ ··· 2u + 1
I
u
3
= ⟨−u
3
+ b, u
3
+ u
2
+ 2a 2u, u
4
u
2
+ 1
I
u
4
= b, a 1, u
4
u
3
+ 1
I
u
5
= b + 1, u
3
+ a 1, u
4
u
3
+ 1
I
u
6
= b, a 1, u + 1
I
u
7
= b + 1, a, u + 1
I
u
8
= ⟨−u
3
+ b, u
3
+ 2a 2u 1, u
4
u
2
+ 1
I
u
9
= b + 1, u
5
a u
5
u
3
a + 2u
3
+ au u + 1
* 8 irreducible components of dim
C
= 0, with total 122 representations.
* 1 irreducible components of dim
C
= 1
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= ⟨−7.70 × 10
53
u
39
1.74 × 10
54
u
38
+ · · · + 2.50 × 10
54
b 1.01 ×
10
54
, 5.18 × 10
54
u
39
+ 1.38 × 10
55
u
38
+ · · · + 1.09 × 10
55
a 8.79 ×
10
53
, 5u
40
+ 15u
39
+ · · · + 4u + 13
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
0.476839u
39
1.27246u
38
+ ··· 5.39284u + 0.0809549
0.307415u
39
+ 0.695481u
38
+ ··· + 2.07333u + 0.403613
a
12
=
0.169424u
39
0.576975u
38
+ ··· 3.31951u + 0.484568
0.307415u
39
+ 0.695481u
38
+ ··· + 2.07333u + 0.403613
a
9
=
0.211994u
39
0.480895u
38
+ ··· 3.96053u 0.213115
0.0500582u
39
+ 0.116432u
38
+ ··· + 0.995645u + 0.307144
a
1
=
u
3
u
5
u
3
+ u
a
6
=
0.191581u
39
0.280282u
38
+ ··· + 5.99057u + 1.63083
0.0736869u
39
0.292199u
38
+ ··· 0.484607u 0.887781
a
4
=
0.231719u
39
+ 0.602871u
38
+ ··· + 1.98498u 0.495273
0.0632015u
39
+ 0.154197u
38
+ ··· + 0.0133278u + 0.385259
a
5
=
0.245279u
39
0.480339u
38
+ ··· + 6.44253u + 1.18353
0.133010u
39
0.382392u
38
+ ··· 0.608099u 1.13846
a
10
=
0.660060u
39
1.59385u
38
+ ··· 8.11569u 0.968106
0.246464u
39
+ 0.516908u
38
+ ··· + 1.74196u + 0.398054
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.355272u
39
+ 2.47238u
38
+ ··· + 1.40321u + 8.32948
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
25(25u
40
+ 355u
39
+ ··· 2766u + 169)
c
2
, c
7
5(5u
40
15u
39
+ ··· 4u + 13)
c
3
, c
8
64(64u
40
+ 192u
39
+ ··· + 80u + 25)
c
4
, c
9
5(5u
40
15u
39
+ ··· 58u + 13)
c
5
, c
6
, c
11
c
12
u
40
+ 4u
39
+ ··· + 36u + 4
c
10
25(25u
40
455u
39
+ ··· + 718u + 169)
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
625(625y
40
+ 14425y
39
+ ··· 2166706y + 28561)
c
2
, c
7
25(25y
40
355y
39
+ ··· + 2766y + 169)
c
3
, c
8
4096(4096y
40
53248y
39
+ ··· 13450y + 625)
c
4
, c
9
25(25y
40
455y
39
+ ··· + 718y + 169)
c
5
, c
6
, c
11
c
12
y
40
12y
39
+ ··· 696y + 16
c
10
625(625y
40
+ 4425y
39
+ ··· 2689202y + 28561)
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.970531 + 0.178964I
a = 0.833678 + 1.090430I
b = 0.657380 + 0.842879I
4.36949 + 3.79276I 0.84937 5.47947I
u = 0.970531 0.178964I
a = 0.833678 1.090430I
b = 0.657380 0.842879I
4.36949 3.79276I 0.84937 + 5.47947I
u = 0.800492 + 0.625954I
a = 1.186250 0.317798I
b = 0.13126 + 1.45702I
0.377065 0.505610I 13.55208 + 2.04018I
u = 0.800492 0.625954I
a = 1.186250 + 0.317798I
b = 0.13126 1.45702I
0.377065 + 0.505610I 13.55208 2.04018I
u = 0.916490 + 0.502951I
a = 0.335321 + 0.936812I
b = 0.164319 + 0.087454I
0.08890 + 4.10799I 9.67304 7.45476I
u = 0.916490 0.502951I
a = 0.335321 0.936812I
b = 0.164319 0.087454I
0.08890 4.10799I 9.67304 + 7.45476I
u = 0.957016 + 0.438264I
a = 0.286645 + 0.087328I
b = 0.282628 + 0.561245I
1.45001 1.63863I 1.206223 + 0.491984I
u = 0.957016 0.438264I
a = 0.286645 0.087328I
b = 0.282628 0.561245I
1.45001 + 1.63863I 1.206223 0.491984I
u = 0.911045 + 0.633331I
a = 0.896481 0.513913I
b = 0.33799 + 1.45617I
0.73084 + 5.44478I 10.81898 9.02994I
u = 0.911045 0.633331I
a = 0.896481 + 0.513913I
b = 0.33799 1.45617I
0.73084 5.44478I 10.81898 + 9.02994I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.951215 + 0.571492I
a = 0.650883 0.383013I
b = 0.428609 + 1.127700I
2.13110 1.53175I 4.45404 + 4.45582I
u = 0.951215 0.571492I
a = 0.650883 + 0.383013I
b = 0.428609 1.127700I
2.13110 + 1.53175I 4.45404 4.45582I
u = 0.873906 + 0.143183I
a = 1.14313 + 1.17285I
b = 0.567731 + 0.944214I
3.47850 + 1.11172I 0.88815 1.52267I
u = 0.873906 0.143183I
a = 1.14313 1.17285I
b = 0.567731 0.944214I
3.47850 1.11172I 0.88815 + 1.52267I
u = 0.719139 + 0.511234I
a = 1.309510 + 0.000140I
b = 0.326936 + 1.143020I
1.35289 2.89894I 8.70495 0.09481I
u = 0.719139 0.511234I
a = 1.309510 0.000140I
b = 0.326936 1.143020I
1.35289 + 2.89894I 8.70495 + 0.09481I
u = 0.588353 + 0.956868I
a = 1.60068 + 0.27140I
b = 1.37609 0.52776I
8.8274 13.1342I 12.15484 + 6.65872I
u = 0.588353 0.956868I
a = 1.60068 0.27140I
b = 1.37609 + 0.52776I
8.8274 + 13.1342I 12.15484 6.65872I
u = 0.618330 + 0.966474I
a = 1.58166 + 0.29564I
b = 1.298800 0.465176I
6.35181 + 7.20509I 10.12101 3.51952I
u = 0.618330 0.966474I
a = 1.58166 0.29564I
b = 1.298800 + 0.465176I
6.35181 7.20509I 10.12101 + 3.51952I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.338231 + 1.117800I
a = 1.43704 + 0.00820I
b = 1.193230 + 0.235279I
7.17464 + 7.33287I 14.9640 8.5081I
u = 0.338231 1.117800I
a = 1.43704 0.00820I
b = 1.193230 0.235279I
7.17464 7.33287I 14.9640 + 8.5081I
u = 0.602564 + 1.040950I
a = 1.52308 + 0.24652I
b = 1.351000 0.264366I
12.76580 3.62003I 16.0601 + 2.4487I
u = 0.602564 1.040950I
a = 1.52308 0.24652I
b = 1.351000 + 0.264366I
12.76580 + 3.62003I 16.0601 2.4487I
u = 1.248820 + 0.245961I
a = 0.407145 + 0.707475I
b = 0.988408 + 0.451580I
1.76098 + 5.75545I 3.78884 7.25461I
u = 1.248820 0.245961I
a = 0.407145 0.707475I
b = 0.988408 0.451580I
1.76098 5.75545I 3.78884 + 7.25461I
u = 1.287890 + 0.155559I
a = 0.197100 + 0.675611I
b = 1.172550 + 0.479770I
1.16532 11.28520I 7.60677 + 9.06404I
u = 1.287890 0.155559I
a = 0.197100 0.675611I
b = 1.172550 0.479770I
1.16532 + 11.28520I 7.60677 9.06404I
u = 1.108950 + 0.734483I
a = 1.61641 1.35965I
b = 1.38090 0.60199I
7.2067 + 19.3213I 10.0095 10.7971I
u = 1.108950 0.734483I
a = 1.61641 + 1.35965I
b = 1.38090 + 0.60199I
7.2067 19.3213I 10.0095 + 10.7971I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.100690 + 0.748356I
a = 1.62760 1.23899I
b = 1.31857 0.55246I
4.8369 13.4697I 7.95384 + 7.41378I
u = 1.100690 0.748356I
a = 1.62760 + 1.23899I
b = 1.31857 + 0.55246I
4.8369 + 13.4697I 7.95384 7.41378I
u = 0.535060 + 0.369159I
a = 0.693924 + 0.131388I
b = 0.374703 + 0.056422I
1.022250 0.157854I 11.13565 + 1.03898I
u = 0.535060 0.369159I
a = 0.693924 0.131388I
b = 0.374703 0.056422I
1.022250 + 0.157854I 11.13565 1.03898I
u = 1.129960 + 0.773268I
a = 1.39080 1.14075I
b = 1.36313 0.39095I
11.1026 + 10.1596I 13.5699 6.4088I
u = 1.129960 0.773268I
a = 1.39080 + 1.14075I
b = 1.36313 + 0.39095I
11.1026 10.1596I 13.5699 + 6.4088I
u = 1.060210 + 0.886721I
a = 1.48433 0.62286I
b = 1.071830 0.283744I
2.70642 8.04384I 9.5123 + 11.1353I
u = 1.060210 0.886721I
a = 1.48433 + 0.62286I
b = 1.071830 + 0.283744I
2.70642 + 8.04384I 9.5123 11.1353I
u = 0.082088 + 0.218378I
a = 1.80768 2.55183I
b = 0.140579 + 0.756809I
1.53964 2.22484I 2.67513 + 4.18107I
u = 0.082088 0.218378I
a = 1.80768 + 2.55183I
b = 0.140579 0.756809I
1.53964 + 2.22484I 2.67513 4.18107I
8
II. I
u
2
=
2u
31
a+3u
31
+· · ·2a+4, 2u
30
a+16u
31
+· · ·+2a15, u
32
u
31
+· · ·2u+1
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
a
2u
31
a 3u
31
+ ··· + 2a 4
a
12
=
2u
31
a 3u
31
+ ··· + 3a 4
2u
31
a 3u
31
+ ··· + 2a 4
a
9
=
u
31
a +
9
2
u
31
+ ··· 9a
21
2
2u
31
a + u
31
+ ··· 4a 3
a
1
=
u
3
u
5
u
3
+ u
a
6
=
3u
31
a 4u
31
+ ··· + 4a + 12
u
31
a 2u
31
+ ··· + 2a + 3
a
4
=
u
31
a
13
2
u
31
+ ··· 3a +
35
2
2u
31
a u
31
+ ··· + a + 9
a
5
=
3u
31
a 4u
31
+ ··· + 4a + 11
1
a
10
=
3u
31
a
21
2
u
31
+ ··· a
5
2
u
2u
31
a 4u
31
+ ··· + 3u 6
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
30
20u
28
+ 4u
27
+ 68u
26
20u
25
156u
24
+ 68u
23
+ 276u
22
160u
21
380u
20
+
292u
19
+ 404u
18
428u
17
328u
16
+ 504u
15
+ 160u
14
496u
13
+ 8u
12
+ 392u
11
124u
10
252u
9
+ 156u
8
+ 120u
7
116u
6
28u
5
+ 64u
4
4u
3
16u
2
+ 12u + 10
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
32
+ 11u
31
+ ··· + 2u + 1)
2
c
2
, c
7
(u
32
+ u
31
+ ··· + 2u + 1)
2
c
3
, c
8
4(4u
64
+ 56u
63
+ ··· + 9.68814 × 10
7
u + 1.07057 × 10
7
)
c
4
, c
9
(u
32
+ u
31
+ ··· u
2
+ 1)
2
c
5
, c
6
, c
11
c
12
u
64
+ 4u
63
+ ··· + 9164u + 2061
c
10
(u
32
15u
31
+ ··· 2u + 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
32
+ 21y
31
+ ··· + 2y + 1)
2
c
2
, c
7
(y
32
11y
31
+ ··· 2y + 1)
2
c
3
, c
8
16
· (16y
64
592y
63
+ ··· 2588329366713886y + 114613061651001)
c
4
, c
9
(y
32
15y
31
+ ··· 2y + 1)
2
c
5
, c
6
, c
11
c
12
y
64
44y
63
+ ··· 8369050y + 4247721
c
10
(y
32
+ 5y
31
+ ··· + 2y + 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.613006 + 0.792175I
a = 0.580332 + 0.498725I
b = 0.046189 1.144740I
4.35959 + 7.30693I 10.17644 4.86883I
u = 0.613006 + 0.792175I
a = 1.55904 0.63002I
b = 1.43094 + 0.54420I
4.35959 + 7.30693I 10.17644 4.86883I
u = 0.613006 0.792175I
a = 0.580332 0.498725I
b = 0.046189 + 1.144740I
4.35959 7.30693I 10.17644 + 4.86883I
u = 0.613006 0.792175I
a = 1.55904 + 0.63002I
b = 1.43094 0.54420I
4.35959 7.30693I 10.17644 + 4.86883I
u = 0.674958 + 0.742403I
a = 0.231789 + 0.247033I
b = 0.519927 0.890443I
6.92548 + 0.05779I 13.67435 + 0.61686I
u = 0.674958 + 0.742403I
a = 1.89732 0.65378I
b = 1.47394 + 0.15920I
6.92548 + 0.05779I 13.67435 + 0.61686I
u = 0.674958 0.742403I
a = 0.231789 0.247033I
b = 0.519927 + 0.890443I
6.92548 0.05779I 13.67435 0.61686I
u = 0.674958 0.742403I
a = 1.89732 + 0.65378I
b = 1.47394 0.15920I
6.92548 0.05779I 13.67435 0.61686I
u = 0.600521 + 0.762759I
a = 0.636612 + 0.360731I
b = 0.015937 0.912614I
2.30027 2.26361I 6.98106 + 0.67006I
u = 0.600521 + 0.762759I
a = 1.58656 0.49003I
b = 1.282540 + 0.447749I
2.30027 2.26361I 6.98106 + 0.67006I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.600521 0.762759I
a = 0.636612 0.360731I
b = 0.015937 + 0.912614I
2.30027 + 2.26361I 6.98106 0.67006I
u = 0.600521 0.762759I
a = 1.58656 + 0.49003I
b = 1.282540 0.447749I
2.30027 + 2.26361I 6.98106 0.67006I
u = 0.849583 + 0.407230I
a = 0.12171 + 4.60078I
b = 1.097710 + 0.061840I
3.18087 4.15286I 5.98714 + 7.18864I
u = 0.849583 + 0.407230I
a = 5.27629 + 1.13566I
b = 0.896174 + 0.115665I
3.18087 4.15286I 5.98714 + 7.18864I
u = 0.849583 0.407230I
a = 0.12171 4.60078I
b = 1.097710 0.061840I
3.18087 + 4.15286I 5.98714 7.18864I
u = 0.849583 0.407230I
a = 5.27629 1.13566I
b = 0.896174 0.115665I
3.18087 + 4.15286I 5.98714 7.18864I
u = 1.093530 + 0.032199I
a = 0.303475 + 0.746533I
b = 0.432660 + 0.694262I
3.44018 1.36697I 0.099351 + 0.550230I
u = 1.093530 + 0.032199I
a = 0.132205 0.469626I
b = 0.906765 0.547724I
3.44018 1.36697I 0.099351 + 0.550230I
u = 1.093530 0.032199I
a = 0.303475 0.746533I
b = 0.432660 0.694262I
3.44018 + 1.36697I 0.099351 0.550230I
u = 1.093530 0.032199I
a = 0.132205 + 0.469626I
b = 0.906765 + 0.547724I
3.44018 + 1.36697I 0.099351 0.550230I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.098860 + 0.059621I
a = 0.432040 + 0.929418I
b = 0.258929 + 0.813001I
1.66914 + 6.50568I 3.03082 5.51070I
u = 1.098860 + 0.059621I
a = 0.314191 0.418292I
b = 1.079870 0.537053I
1.66914 + 6.50568I 3.03082 5.51070I
u = 1.098860 0.059621I
a = 0.432040 0.929418I
b = 0.258929 0.813001I
1.66914 6.50568I 3.03082 + 5.51070I
u = 1.098860 0.059621I
a = 0.314191 + 0.418292I
b = 1.079870 + 0.537053I
1.66914 6.50568I 3.03082 + 5.51070I
u = 0.858258 + 0.694285I
a = 1.40848 + 0.49567I
b = 1.337880 0.399067I
5.89812 2.66625I 9.77705 + 3.31297I
u = 0.858258 + 0.694285I
a = 1.74760 1.42262I
b = 1.220450 0.526531I
5.89812 2.66625I 9.77705 + 3.31297I
u = 0.858258 0.694285I
a = 1.40848 0.49567I
b = 1.337880 + 0.399067I
5.89812 + 2.66625I 9.77705 3.31297I
u = 0.858258 0.694285I
a = 1.74760 + 1.42262I
b = 1.220450 + 0.526531I
5.89812 + 2.66625I 9.77705 3.31297I
u = 0.828553 + 0.741140I
a = 0.890956 + 0.613775I
b = 1.37093 0.68976I
8.99039 0.95663I 14.3549 + 0.9762I
u = 0.828553 + 0.741140I
a = 1.87999 1.13465I
b = 1.51210 0.51307I
8.99039 0.95663I 14.3549 + 0.9762I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.828553 0.741140I
a = 0.890956 0.613775I
b = 1.37093 + 0.68976I
8.99039 + 0.95663I 14.3549 0.9762I
u = 0.828553 0.741140I
a = 1.87999 + 1.13465I
b = 1.51210 + 0.51307I
8.99039 + 0.95663I 14.3549 0.9762I
u = 0.891994 + 0.729689I
a = 1.31090 + 0.92685I
b = 1.59800 0.38325I
8.79813 + 6.53878I 13.6140 6.9915I
u = 0.891994 + 0.729689I
a = 1.58473 1.11655I
b = 1.25531 0.81498I
8.79813 + 6.53878I 13.6140 6.9915I
u = 0.891994 0.729689I
a = 1.31090 0.92685I
b = 1.59800 + 0.38325I
8.79813 6.53878I 13.6140 + 6.9915I
u = 0.891994 0.729689I
a = 1.58473 + 1.11655I
b = 1.25531 + 0.81498I
8.79813 6.53878I 13.6140 + 6.9915I
u = 1.022970 + 0.630121I
a = 0.200460 + 0.184858I
b = 0.180956 0.447265I
0.25603 + 5.05352I 3.88531 5.31459I
u = 1.022970 + 0.630121I
a = 1.35085 + 1.29776I
b = 0.971944 + 0.280768I
0.25603 + 5.05352I 3.88531 5.31459I
u = 1.022970 0.630121I
a = 0.200460 0.184858I
b = 0.180956 + 0.447265I
0.25603 5.05352I 3.88531 + 5.31459I
u = 1.022970 0.630121I
a = 1.35085 1.29776I
b = 0.971944 0.280768I
0.25603 5.05352I 3.88531 + 5.31459I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.997643 + 0.681461I
a = 0.717630 0.372056I
b = 0.298652 0.988469I
5.95409 5.49753I 11.62281 + 4.60034I
u = 0.997643 + 0.681461I
a = 1.62326 + 1.33956I
b = 1.45118 + 0.32417I
5.95409 5.49753I 11.62281 + 4.60034I
u = 0.997643 0.681461I
a = 0.717630 + 0.372056I
b = 0.298652 + 0.988469I
5.95409 + 5.49753I 11.62281 4.60034I
u = 0.997643 0.681461I
a = 1.62326 1.33956I
b = 1.45118 0.32417I
5.95409 + 5.49753I 11.62281 4.60034I
u = 0.416995 + 0.648442I
a = 0.949384 + 0.075306I
b = 0.239105 + 0.481030I
3.20064 4.79464I 9.29089 + 5.61871I
u = 0.416995 + 0.648442I
a = 1.39815 + 0.63323I
b = 1.185950 0.159624I
3.20064 4.79464I 9.29089 + 5.61871I
u = 0.416995 0.648442I
a = 0.949384 0.075306I
b = 0.239105 0.481030I
3.20064 + 4.79464I 9.29089 5.61871I
u = 0.416995 0.648442I
a = 1.39815 0.63323I
b = 1.185950 + 0.159624I
3.20064 + 4.79464I 9.29089 5.61871I
u = 1.031610 + 0.673233I
a = 0.660128 + 0.130914I
b = 0.108465 1.062730I
1.02610 + 7.72193I 5.01562 5.32873I
u = 1.031610 + 0.673233I
a = 1.63202 + 1.29034I
b = 1.30307 + 0.59506I
1.02610 + 7.72193I 5.01562 5.32873I
16
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.031610 0.673233I
a = 0.660128 0.130914I
b = 0.108465 + 1.062730I
1.02610 7.72193I 5.01562 + 5.32873I
u = 1.031610 0.673233I
a = 1.63202 1.29034I
b = 1.30307 0.59506I
1.02610 7.72193I 5.01562 + 5.32873I
u = 1.036490 + 0.686644I
a = 0.859246 + 0.141872I
b = 0.088389 1.243250I
3.09358 12.88870I 8.12323 + 9.41526I
u = 1.036490 + 0.686644I
a = 1.66673 + 1.31376I
b = 1.42433 + 0.67775I
3.09358 12.88870I 8.12323 + 9.41526I
u = 1.036490 0.686644I
a = 0.859246 0.141872I
b = 0.088389 + 1.243250I
3.09358 + 12.88870I 8.12323 9.41526I
u = 1.036490 0.686644I
a = 1.66673 1.31376I
b = 1.42433 0.67775I
3.09358 + 12.88870I 8.12323 9.41526I
u = 0.730192 + 0.168194I
a = 1.037910 + 0.857867I
b = 1.158730 + 0.009887I
2.12065 + 0.19319I 2.79170 0.78328I
u = 0.730192 + 0.168194I
a = 2.40293 + 0.28821I
b = 0.655532 + 0.107869I
2.12065 + 0.19319I 2.79170 0.78328I
u = 0.730192 0.168194I
a = 1.037910 0.857867I
b = 1.158730 0.009887I
2.12065 0.19319I 2.79170 + 0.78328I
u = 0.730192 0.168194I
a = 2.40293 0.28821I
b = 0.655532 0.107869I
2.12065 0.19319I 2.79170 + 0.78328I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.164238 + 0.469611I
a = 0.67492 + 1.27326I
b = 0.926457 + 0.376650I
4.93312 + 1.19641I 13.57525 0.85209I
u = 0.164238 + 0.469611I
a = 1.03530 + 1.51984I
b = 1.225220 + 0.155136I
4.93312 + 1.19641I 13.57525 0.85209I
u = 0.164238 0.469611I
a = 0.67492 1.27326I
b = 0.926457 0.376650I
4.93312 1.19641I 13.57525 + 0.85209I
u = 0.164238 0.469611I
a = 1.03530 1.51984I
b = 1.225220 0.155136I
4.93312 1.19641I 13.57525 + 0.85209I
18
III. I
u
3
= ⟨−u
3
+ b, u
3
+ u
2
+ 2a 2u, u
4
u
2
+ 1
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
1
2
u
3
1
2
u
2
+ u
u
3
a
12
=
1
2
u
3
1
2
u
2
+ u
u
3
a
9
=
1
2
u
3
1
4
u
2
+ u +
1
4
1
2
u
2
+
1
2
u
a
1
=
u
3
0
a
6
=
1
2
u
3
+ u
2
+
1
2
u +
1
2
1
a
4
=
1
2
u
3
1
2
u
2
1
4
u + 1
1
2
u
3
+
1
2
u
2
+
1
2
u
1
2
a
5
=
1
2
u
3
+ u
2
+
1
2
u
1
2
1
a
10
=
3
2
u
3
3
4
u
2
+
3
2
u
1
2
u
3
+
1
2
u +
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
2
19
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
2
u + 1)
2
c
2
, c
4
, c
7
c
9
u
4
u
2
+ 1
c
3
, c
8
16(16u
4
+ 16u
3
+ 8u
2
4u + 1)
c
5
, c
6
, c
11
c
12
(u
2
+ 1)
2
20
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
2
+ y + 1)
2
c
2
, c
4
, c
7
c
9
(y
2
y + 1)
2
c
3
, c
8
256(256y
4
+ 224y
2
+ 1)
c
5
, c
6
, c
11
c
12
(y + 1)
4
21
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.616025 0.433013I
b = 1.000000I
1.64493 4.05977I 4.00000 + 6.92820I
u = 0.866025 0.500000I
a = 0.616025 + 0.433013I
b = 1.000000I
1.64493 + 4.05977I 4.00000 6.92820I
u = 0.866025 + 0.500000I
a = 1.116030 + 0.433013I
b = 1.000000I
1.64493 + 4.05977I 4.00000 6.92820I
u = 0.866025 0.500000I
a = 1.116030 0.433013I
b = 1.000000I
1.64493 4.05977I 4.00000 + 6.92820I
22
IV. I
u
4
= b, a 1, u
4
u
3
+ 1
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
1
0
a
12
=
1
0
a
9
=
u
2
+ 1
u
2
a
1
=
u
3
1
a
6
=
1
0
a
4
=
u
3
u
3
+ u
a
5
=
u
3
+ 1
1
a
10
=
u
3
+ u
2
u
3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ u
3
+ 2u
2
+ 1
c
2
, c
4
, c
7
c
9
u
4
+ u
3
+ 1
c
3
u
4
u
2
2u + 3
c
5
, c
12
(u 1)
4
c
6
, c
11
u
4
c
8
, c
10
u
4
u
3
+ 2u
2
+ 1
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
10
y
4
+ 3y
3
+ 6y
2
+ 4y + 1
c
2
, c
4
, c
7
c
9
y
4
y
3
+ 2y
2
+ 1
c
3
y
4
2y
3
+ 7y
2
10y + 9
c
5
, c
12
(y 1)
4
c
6
, c
11
y
4
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.518913 + 0.666610I
a = 1.00000
b = 0
1.64493 6.00000
u = 0.518913 0.666610I
a = 1.00000
b = 0
1.64493 6.00000
u = 1.018910 + 0.602565I
a = 1.00000
b = 0
1.64493 6.00000
u = 1.018910 0.602565I
a = 1.00000
b = 0
1.64493 6.00000
26
V. I
u
5
= b + 1, u
3
+ a 1, u
4
u
3
+ 1
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
u
3
+ 1
1
a
12
=
u
3
1
a
9
=
u
2
u + 1
u
3
+ u
2
+ u
a
1
=
u
3
1
a
6
=
u
3
1
a
4
=
u
3
2u 1
u
3
u
2
+ u
a
5
=
u
3
1
a
10
=
u
3
+ u
2
+ 2
u
3
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ u
3
+ 2u
2
+ 1
c
2
, c
4
, c
7
c
9
u
4
+ u
3
+ 1
c
3
, c
10
u
4
u
3
+ 2u
2
+ 1
c
5
, c
12
u
4
c
6
, c
11
(u 1)
4
c
8
u
4
u
2
2u + 3
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
3
, c
10
y
4
+ 3y
3
+ 6y
2
+ 4y + 1
c
2
, c
4
, c
7
c
9
y
4
y
3
+ 2y
2
+ 1
c
5
, c
12
y
4
c
6
, c
11
(y 1)
4
c
8
y
4
2y
3
+ 7y
2
10y + 9
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.518913 + 0.666610I
a = 1.55204 + 0.24227I
b = 1.00000
1.64493 6.00000
u = 0.518913 0.666610I
a = 1.55204 0.24227I
b = 1.00000
1.64493 6.00000
u = 1.018910 + 0.602565I
a = 0.94796 + 1.65794I
b = 1.00000
1.64493 6.00000
u = 1.018910 0.602565I
a = 0.94796 1.65794I
b = 1.00000
1.64493 6.00000
30
VI. I
u
6
= b, a 1, u + 1
(i) Arc colorings
a
2
=
0
1
a
7
=
1
0
a
8
=
1
1
a
3
=
1
0
a
11
=
1
0
a
12
=
1
0
a
9
=
2
1
a
1
=
1
1
a
6
=
1
0
a
4
=
1
0
a
5
=
2
1
a
10
=
3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u + 1
c
2
, c
4
, c
5
c
7
, c
8
, c
9
c
10
, c
12
u 1
c
3
, c
6
, c
11
u
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
c
5
, c
7
, c
8
c
9
, c
10
, c
12
y 1
c
3
, c
6
, c
11
y
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
1.64493 6.00000
34
VII. I
u
7
= b + 1, a, u + 1
(i) Arc colorings
a
2
=
0
1
a
7
=
1
0
a
8
=
1
1
a
3
=
1
0
a
11
=
0
1
a
12
=
1
1
a
9
=
1
1
a
1
=
1
1
a
6
=
1
1
a
4
=
0
1
a
5
=
1
1
a
10
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u + 1
c
2
, c
3
, c
4
c
6
, c
7
, c
9
c
10
, c
11
u 1
c
5
, c
8
, c
12
u
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
6
, c
7
c
9
, c
10
, c
11
y 1
c
5
, c
8
, c
12
y
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
1.64493 6.00000
38
VIII. I
u
8
= ⟨−u
3
+ b, u
3
+ 2a 2u 1, u
4
u
2
+ 1
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
1
2
u
3
+ u +
1
2
u
3
a
12
=
1
2
u
3
+ u +
1
2
u
3
a
9
=
u
3
1
2
u +
1
2
1
2
u
3
+
1
2
u
2
1
2
u
a
1
=
u
3
0
a
6
=
1
2
u
3
+ u
2
+
1
2
1
a
4
=
u
2
1
2
u
1
2
1
2
u
3
1
2
u
2
+
1
2
u
a
5
=
1
2
u
3
+ u
2
1
2
1
a
10
=
1
2
u
2
+
1
2
u
3
+
1
2
u
2
1
2
u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
10
(u
2
u + 1)
2
c
2
, c
4
, c
7
c
9
u
4
u
2
+ 1
c
3
, c
8
4(4u
4
+ 4u
3
+ 2u
2
+ 2u + 1)
c
5
, c
6
, c
11
c
12
(u
2
+ 1)
2
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
10
(y
2
+ y + 1)
2
c
2
, c
4
, c
7
c
9
(y
2
y + 1)
2
c
3
, c
8
16(16y
4
4y
2
+ 1)
c
5
, c
6
, c
11
c
12
(y + 1)
4
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 1.36603
b = 1.000000I
1.64493 4.00000
u = 0.866025 0.500000I
a = 1.36603
b = 1.000000I
1.64493 4.00000
u = 0.866025 + 0.500000I
a = 0.366025
b = 1.000000I
1.64493 4.00000
u = 0.866025 0.500000I
a = 0.366025
b = 1.000000I
1.64493 4.00000
42
IX. I
u
9
= b + 1, u
5
a u
5
u
3
a + 2u
3
+ au u + 1
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
11
=
a
1
a
12
=
a 1
1
a
9
=
a
2
u
2
2u
2
a + u
2
+ a
u
2
a + 2u
2
1
a
1
=
u
3
u
5
u
3
+ u
a
6
=
a + 1
1
a
4
=
u
3
a
2
+ 2u
3
a + a
2
u u
3
3au + u
u
3
a 2u
3
au + 3u
a
5
=
u
3
a + 1
u
5
u
3
+ u + 1
a
10
=
u
4
a
2
2u
4
a + u
4
+ u
2
a + a
u
4
a + 2u
4
u
2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
43
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
9
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
3.28987 12.0000
44
X. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
25(u + 1)
2
(u
2
u + 1)
4
(u
4
+ u
3
+ 2u
2
+ 1)
2
· ((u
32
+ 11u
31
+ ··· + 2u + 1)
2
)(25u
40
+ 355u
39
+ ··· 2766u + 169)
c
2
, c
7
5(u 1)
2
(u
4
u
2
+ 1)
2
(u
4
+ u
3
+ 1)
2
(u
32
+ u
31
+ ··· + 2u + 1)
2
· (5u
40
15u
39
+ ··· 4u + 13)
c
3
, c
8
16384u(u 1)(u
4
u
2
2u + 3)(u
4
u
3
+ 2u
2
+ 1)
· (4u
4
+ 4u
3
+ 2u
2
+ 2u + 1)(16u
4
+ 16u
3
+ 8u
2
4u + 1)
· (64u
40
+ 192u
39
+ ··· + 80u + 25)
· (4u
64
+ 56u
63
+ ··· + 96881428u + 10705749)
c
4
, c
9
5(u 1)
2
(u
4
u
2
+ 1)
2
(u
4
+ u
3
+ 1)
2
(u
32
+ u
31
+ ··· u
2
+ 1)
2
· (5u
40
15u
39
+ ··· 58u + 13)
c
5
, c
6
, c
11
c
12
u
5
(u 1)
5
(u
2
+ 1)
4
(u
40
+ 4u
39
+ ··· + 36u + 4)
· (u
64
+ 4u
63
+ ··· + 9164u + 2061)
c
10
25(u 1)
2
(u
2
u + 1)
4
(u
4
u
3
+ 2u
2
+ 1)
2
· ((u
32
15u
31
+ ··· 2u + 1)
2
)(25u
40
455u
39
+ ··· + 718u + 169)
45
XI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
625(y 1)
2
(y
2
+ y + 1)
4
(y
4
+ 3y
3
+ 6y
2
+ 4y + 1)
2
· (y
32
+ 21y
31
+ ··· + 2y + 1)
2
· (625y
40
+ 14425y
39
+ ··· 2166706y + 28561)
c
2
, c
7
25(y 1)
2
(y
2
y + 1)
4
(y
4
y
3
+ 2y
2
+ 1)
2
· ((y
32
11y
31
+ ··· 2y + 1)
2
)(25y
40
355y
39
+ ··· + 2766y + 169)
c
3
, c
8
268435456(y)(y 1)(y
4
2y
3
+ ··· 10y + 9)(y
4
+ 3y
3
+ ··· + 4y + 1)
· (16y
4
4y
2
+ 1)(256y
4
+ 224y
2
+ 1)
· (4096y
40
53248y
39
+ ··· 13450y + 625)
· (16y
64
592y
63
+ ··· 2588329366713886y + 114613061651001)
c
4
, c
9
25(y 1)
2
(y
2
y + 1)
4
(y
4
y
3
+ 2y
2
+ 1)
2
· ((y
32
15y
31
+ ··· 2y + 1)
2
)(25y
40
455y
39
+ ··· + 718y + 169)
c
5
, c
6
, c
11
c
12
y
5
(y 1)
5
(y + 1)
8
(y
40
12y
39
+ ··· 696y + 16)
· (y
64
44y
63
+ ··· 8369050y + 4247721)
c
10
625(y 1)
2
(y
2
+ y + 1)
4
(y
4
+ 3y
3
+ 6y
2
+ 4y + 1)
2
· (y
32
+ 5y
31
+ ··· + 2y + 1)
2
· (625y
40
+ 4425y
39
+ ··· 2689202y + 28561)
46