10
66
(K10a
40
)
A knot diagram
1
Linearized knot diagam
6 7 10 8 3 2 9 5 1 4
Solving Sequence
4,8
5
9,10
1 3 6 7 2
c
4
c
8
c
10
c
3
c
5
c
7
c
2
c
1
, c
6
, c
9
Ideals for irreducible components
2
of X
par
I
u
1
= hb u, u
15
+ u
14
2u
13
3u
12
+ 4u
11
+ 6u
10
u
9
6u
8
+ 2u
7
+ 5u
6
+ 3u
5
3u
4
+ 2u
3
+ 2u
2
+ 2a + 3u,
u
16
+ u
15
3u
14
4u
13
+ 6u
12
+ 9u
11
5u
10
12u
9
+ 3u
8
+ 11u
7
+ u
6
8u
5
u
4
+ 5u
3
+ 3u
2
2u 1i
I
u
2
= h11603u
23
+ 6022u
22
+ ··· + 8177b + 4273, 3426u
23
2155u
22
+ ··· + 8177a 28435,
u
24
+ u
23
+ ··· + 4u + 1i
I
u
3
= hb 1, a
2
4a + 2, u + 1i
I
u
4
= hb + 1, a + 2, u 1i
* 4 irreducible components of dim
C
= 0, with total 43 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hb u, u
15
+ u
14
+ · · · + 2a + 3u, u
16
+ u
15
+ · · · 2u 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
3
+ u
a
10
=
1
2
u
15
1
2
u
14
+ ··· u
2
3
2
u
u
a
1
=
1
2
u
15
1
2
u
14
+ ··· u
2
5
2
u
u
a
3
=
1
2
u
14
+
1
2
u
13
+ ··· + u +
3
2
u
2
a
6
=
1
2
u
15
3
2
u
14
+ ···
9
2
u 1
1
2
u
14
+
1
2
u
13
+ ··· + u +
1
2
a
7
=
u
3
u
5
u
3
+ u
a
2
=
u
10
u
8
+ 2u
6
+ u
4
+ u
2
+ 1
1
2
u
14
1
2
u
13
+ ··· u
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
15
+ u
14
4u
13
3u
12
+ 12u
11
+ 8u
10
19u
9
12u
8
+ 22u
7
+
17u
6
13u
5
13u
4
+ 6u
3
+ 12u
2
u 16
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u
16
+ 3u
15
+ ··· 2u 2
c
3
, c
4
, c
8
c
10
u
16
+ u
15
+ ··· 2u 1
c
5
u
16
9u
15
+ ··· 34u + 14
c
7
, c
9
u
16
+ 7u
15
+ ··· + 10u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
y
16
15y
15
+ ··· 20y + 4
c
3
, c
4
, c
8
c
10
y
16
7y
15
+ ··· 10y + 1
c
5
y
16
3y
15
+ ··· 1156y + 196
c
7
, c
9
y
16
+ 9y
15
+ ··· 38y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.788317 + 0.682807I
a = 0.862130 0.839659I
b = 0.788317 + 0.682807I
0.17586 + 4.85157I 10.18415 6.53900I
u = 0.788317 0.682807I
a = 0.862130 + 0.839659I
b = 0.788317 0.682807I
0.17586 4.85157I 10.18415 + 6.53900I
u = 0.591599 + 0.705742I
a = 0.502397 0.588564I
b = 0.591599 + 0.705742I
3.06515 1.13134I 4.88295 + 2.50814I
u = 0.591599 0.705742I
a = 0.502397 + 0.588564I
b = 0.591599 0.705742I
3.06515 + 1.13134I 4.88295 2.50814I
u = 0.403938 + 0.782402I
a = 0.331306 0.329211I
b = 0.403938 + 0.782402I
1.21964 2.39915I 9.20728 + 0.67092I
u = 0.403938 0.782402I
a = 0.331306 + 0.329211I
b = 0.403938 0.782402I
1.21964 + 2.39915I 9.20728 0.67092I
u = 1.043770 + 0.418403I
a = 1.76067 2.04191I
b = 1.043770 + 0.418403I
8.80698 2.79176I 16.7106 + 5.2072I
u = 1.043770 0.418403I
a = 1.76067 + 2.04191I
b = 1.043770 0.418403I
8.80698 + 2.79176I 16.7106 5.2072I
u = 1.034800 + 0.560504I
a = 1.60194 1.34258I
b = 1.034800 + 0.560504I
1.63698 + 4.78532I 12.50670 3.64348I
u = 1.034800 0.560504I
a = 1.60194 + 1.34258I
b = 1.034800 0.560504I
1.63698 4.78532I 12.50670 + 3.64348I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.123030 + 0.603482I
a = 1.88319 1.11133I
b = 1.123030 + 0.603482I
0.34351 9.16484I 10.75715 + 8.12303I
u = 1.123030 0.603482I
a = 1.88319 + 1.11133I
b = 1.123030 0.603482I
0.34351 + 9.16484I 10.75715 8.12303I
u = 0.703289
a = 2.07989
b = 0.703289
6.93855 11.2730
u = 1.184280 + 0.595800I
a = 2.08419 1.05231I
b = 1.184280 + 0.595800I
5.9872 + 13.0293I 14.9902 8.3428I
u = 1.184280 0.595800I
a = 2.08419 + 1.05231I
b = 1.184280 0.595800I
5.9872 13.0293I 14.9902 + 8.3428I
u = 0.397419
a = 0.546503
b = 0.397419
0.684897 14.2490
6
II. I
u
2
= h11603u
23
+ 6022u
22
+ · · · + 8177b + 4273, 3426u
23
2155u
22
+
· · · + 8177a 28435, u
24
+ u
23
+ · · · + 4u + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
u
a
5
=
1
u
2
a
9
=
u
u
3
+ u
a
10
=
0.418980u
23
+ 0.263544u
22
+ ··· + 0.0328972u + 3.47744
1.41898u
23
0.736456u
22
+ ··· 5.96710u 0.522563
a
1
=
u
23
+ u
22
+ ··· + 6u + 4
1.41898u
23
0.736456u
22
+ ··· 5.96710u 0.522563
a
3
=
1.20509u
23
0.359300u
22
+ ··· + 1.96025u 2.45787
0.682524u
23
+ 0.537116u
22
+ ··· + 5.15336u + 0.418980
a
6
=
0.203987u
23
+ 1.29118u
22
+ ··· + 4.42057u + 5.51266
0.997187u
23
0.285190u
22
+ ··· 4.02678u + 0.362236
a
7
=
u
3
u
5
u
3
+ u
a
2
=
1.12511u
23
0.0760670u
22
+ ··· + 0.287025u 3.10578
0.00195671u
23
+ 0.323346u
22
+ ··· 0.322979u 0.791488
(ii) Obstruction class = 1
(iii) Cusp Shapes =
19748
8177
u
23
+
17088
8177
u
22
+ ··· +
29544
8177
u
105438
8177
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
(u
12
u
11
5u
10
+ 4u
9
+ 9u
8
4u
7
6u
6
2u
5
+ 3u
3
+ u
2
+ 1)
2
c
3
, c
4
, c
8
c
10
u
24
+ u
23
+ ··· + 4u + 1
c
5
(u
12
+ 3u
11
+ ··· + 4u + 1)
2
c
7
, c
9
u
24
+ 13u
23
+ ··· + 4u + 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
(y
12
11y
11
+ ··· + 2y + 1)
2
c
3
, c
4
, c
8
c
10
y
24
13y
23
+ ··· 4y + 1
c
5
(y
12
+ y
11
+ ··· 2y + 1)
2
c
7
, c
9
y
24
5y
23
+ ··· + 48y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.961597 + 0.331697I
a = 2.11926 + 0.49208I
b = 1.189900 + 0.171507I
3.28987 1.20211I 12.00000 + 5.63740I
u = 0.961597 0.331697I
a = 2.11926 0.49208I
b = 1.189900 0.171507I
3.28987 + 1.20211I 12.00000 5.63740I
u = 0.778724 + 0.569322I
a = 0.272376 0.021441I
b = 0.564477 0.633261I
0.174773 + 0.093609I 10.00912 + 0.76204I
u = 0.778724 0.569322I
a = 0.272376 + 0.021441I
b = 0.564477 + 0.633261I
0.174773 0.093609I 10.00912 0.76204I
u = 0.285725 + 0.889847I
a = 0.777424 + 0.420961I
b = 1.104540 0.597792I
3.28987 7.58818I 12.00000 + 5.13539I
u = 0.285725 0.889847I
a = 0.777424 0.420961I
b = 1.104540 + 0.597792I
3.28987 + 7.58818I 12.00000 5.13539I
u = 0.384175 + 0.809134I
a = 0.520131 + 0.408228I
b = 0.998981 0.600305I
1.84911 + 3.88480I 7.19439 4.17140I
u = 0.384175 0.809134I
a = 0.520131 0.408228I
b = 0.998981 + 0.600305I
1.84911 3.88480I 7.19439 + 4.17140I
u = 0.564477 + 0.633261I
a = 0.005650 + 0.310630I
b = 0.778724 0.569322I
0.174773 0.093609I 10.00912 0.76204I
u = 0.564477 0.633261I
a = 0.005650 0.310630I
b = 0.778724 + 0.569322I
0.174773 + 0.093609I 10.00912 + 0.76204I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.057630 + 0.470734I
a = 2.07384 + 0.60989I
b = 1.284660 + 0.258642I
8.42885 + 3.88480I 16.8056 4.1714I
u = 1.057630 0.470734I
a = 2.07384 0.60989I
b = 1.284660 0.258642I
8.42885 3.88480I 16.8056 + 4.1714I
u = 0.998981 + 0.600305I
a = 0.351273 0.367190I
b = 0.384175 0.809134I
1.84911 3.88480I 7.19439 + 4.17140I
u = 0.998981 0.600305I
a = 0.351273 + 0.367190I
b = 0.384175 + 0.809134I
1.84911 + 3.88480I 7.19439 4.17140I
u = 1.165410 + 0.089633I
a = 1.166860 0.270592I
b = 0.313835 0.336199I
6.40496 + 0.09361I 13.99088 + 0.76204I
u = 1.165410 0.089633I
a = 1.166860 + 0.270592I
b = 0.313835 + 0.336199I
6.40496 0.09361I 13.99088 0.76204I
u = 1.189900 + 0.171507I
a = 1.78490 + 0.45036I
b = 0.961597 + 0.331697I
3.28987 1.20211I 12.00000 + 5.63740I
u = 1.189900 0.171507I
a = 1.78490 0.45036I
b = 0.961597 0.331697I
3.28987 + 1.20211I 12.00000 5.63740I
u = 1.104540 + 0.597792I
a = 0.414520 0.510865I
b = 0.285725 0.889847I
3.28987 + 7.58818I 12.00000 5.13539I
u = 1.104540 0.597792I
a = 0.414520 + 0.510865I
b = 0.285725 + 0.889847I
3.28987 7.58818I 12.00000 + 5.13539I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.284660 + 0.258642I
a = 1.80572 + 0.62135I
b = 1.057630 + 0.470734I
8.42885 + 3.88480I 16.8056 4.1714I
u = 1.284660 0.258642I
a = 1.80572 0.62135I
b = 1.057630 0.470734I
8.42885 3.88480I 16.8056 + 4.1714I
u = 0.313835 + 0.336199I
a = 2.64911 + 1.49979I
b = 1.165410 0.089633I
6.40496 0.09361I 13.99088 0.76204I
u = 0.313835 0.336199I
a = 2.64911 1.49979I
b = 1.165410 + 0.089633I
6.40496 + 0.09361I 13.99088 + 0.76204I
12
III. I
u
3
= hb 1, a
2
4a + 2, u + 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
1
a
5
=
1
1
a
9
=
1
0
a
10
=
a
1
a
1
=
a 1
1
a
3
=
a + 1
1
a
6
=
a + 1
a + 3
a
7
=
1
1
a
2
=
1
a 3
(ii) Obstruction class = 1
(iii) Cusp Shapes = 20
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
u
2
2
c
3
, c
7
, c
8
c
9
(u 1)
2
c
4
, c
10
(u + 1)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
(y 2)
2
c
3
, c
4
, c
7
c
8
, c
9
, c
10
(y 1)
2
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.585786
b = 1.00000
8.22467 20.0000
u = 1.00000
a = 3.41421
b = 1.00000
8.22467 20.0000
16
IV. I
u
4
= hb + 1, a + 2, u 1i
(i) Arc colorings
a
4
=
1
0
a
8
=
0
1
a
5
=
1
1
a
9
=
1
0
a
10
=
2
1
a
1
=
1
1
a
3
=
1
1
a
6
=
1
1
a
7
=
1
1
a
2
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
6
u
c
3
, c
8
u + 1
c
4
, c
7
, c
9
c
10
u 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
6
y
c
3
, c
4
, c
7
c
8
, c
9
, c
10
y 1
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 2.00000
b = 1.00000
3.28987 12.0000
20
V. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
u(u
2
2)(u
12
u
11
+ ··· + u
2
+ 1)
2
· (u
16
+ 3u
15
+ ··· 2u 2)
c
3
, c
8
((u 1)
2
)(u + 1)(u
16
+ u
15
+ ··· 2u 1)(u
24
+ u
23
+ ··· + 4u + 1)
c
4
, c
10
(u 1)(u + 1)
2
(u
16
+ u
15
+ ··· 2u 1)(u
24
+ u
23
+ ··· + 4u + 1)
c
5
u(u
2
2)(u
12
+ 3u
11
+ ··· + 4u + 1)
2
(u
16
9u
15
+ ··· 34u + 14)
c
7
, c
9
((u 1)
3
)(u
16
+ 7u
15
+ ··· + 10u + 1)(u
24
+ 13u
23
+ ··· + 4u + 1)
21
VI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
y(y 2)
2
(y
12
11y
11
+ ··· + 2y + 1)
2
(y
16
15y
15
+ ··· 20y + 4)
c
3
, c
4
, c
8
c
10
((y 1)
3
)(y
16
7y
15
+ ··· 10y + 1)(y
24
13y
23
+ ··· 4y + 1)
c
5
y(y 2)
2
(y
12
+ y
11
+ ··· 2y + 1)
2
· (y
16
3y
15
+ ··· 1156y + 196)
c
7
, c
9
((y 1)
3
)(y
16
+ 9y
15
+ ··· 38y + 1)(y
24
5y
23
+ ··· + 48y + 1)
22