12a
0714
(K12a
0714
)
A knot diagram
1
Linearized knot diagam
3 8 9 10 11 12 2 7 1 5 6 4
Solving Sequence
2,8
3 1 7 9 4 10 5 12 6 11
c
2
c
1
c
7
c
8
c
3
c
9
c
4
c
12
c
6
c
11
c
5
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
53
+ u
52
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 53 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
53
+ u
52
+ · · · u 1i
(i) Arc colorings
a
2
=
1
0
a
8
=
0
u
a
3
=
1
u
2
a
1
=
u
2
+ 1
u
4
a
7
=
u
u
a
9
=
u
3
u
3
+ u
a
4
=
u
8
+ u
6
u
4
+ 1
u
8
+ 2u
6
2u
4
+ 2u
2
a
10
=
u
9
+ 2u
7
3u
5
+ 2u
3
u
u
11
+ u
9
2u
7
+ u
5
u
3
+ u
a
5
=
u
28
5u
26
+ ··· + u
2
+ 1
u
30
4u
28
+ ··· 2u
4
+ u
2
a
12
=
u
20
3u
18
+ 7u
16
10u
14
+ 10u
12
7u
10
+ u
8
+ 2u
6
3u
4
+ u
2
+ 1
u
20
4u
18
+ 10u
16
18u
14
+ 23u
12
24u
10
+ 18u
8
10u
6
+ 3u
4
a
6
=
u
39
+ 6u
37
+ ··· + 8u
5
2u
3
u
39
+ 7u
37
+ ··· 3u
5
+ u
a
11
=
u
47
8u
45
+ ··· 10u
5
+ 4u
3
u
49
7u
47
+ ··· 2u
7
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
52
36u
50
+ ··· 8u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
53
+ 17u
52
+ ··· u + 1
c
2
, c
7
u
53
+ u
52
+ ··· u 1
c
3
u
53
u
52
+ ··· + 13u 1
c
4
, c
5
, c
6
c
10
, c
11
u
53
+ u
52
+ ··· u 1
c
9
u
53
+ 7u
52
+ ··· + 293u + 295
c
12
u
53
+ 5u
52
+ ··· 417u 99
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
53
+ 39y
52
+ ··· + 19y 1
c
2
, c
7
y
53
17y
52
+ ··· y 1
c
3
y
53
+ 3y
52
+ ··· + 47y 1
c
4
, c
5
, c
6
c
10
, c
11
y
53
69y
52
+ ··· y 1
c
9
y
53
+ 23y
52
+ ··· 620381y 87025
c
12
y
53
13y
52
+ ··· + 120231y 9801
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.917964 + 0.396458I
11.02350 1.17650I 3.47656 1.29829I
u = 0.917964 0.396458I
11.02350 + 1.17650I 3.47656 + 1.29829I
u = 1.004410 + 0.120149I
3.30847 2.92968I 6.10401 + 5.98646I
u = 1.004410 0.120149I
3.30847 + 2.92968I 6.10401 5.98646I
u = 0.965969 + 0.058477I
2.10934 + 0.19404I 2.74556 + 1.38490I
u = 0.965969 0.058477I
2.10934 0.19404I 2.74556 1.38490I
u = 1.026680 + 0.154387I
0.16153 + 5.66463I 0.36927 7.13482I
u = 1.026680 0.154387I
0.16153 5.66463I 0.36927 + 7.13482I
u = 1.03975
5.77807 1.63810
u = 0.808317 + 0.497173I
1.80074 + 0.19940I 3.10423 0.79204I
u = 0.808317 0.497173I
1.80074 0.19940I 3.10423 + 0.79204I
u = 1.045770 + 0.171126I
9.64765 7.13925I 1.62928 + 5.46600I
u = 1.045770 0.171126I
9.64765 + 7.13925I 1.62928 5.46600I
u = 0.711976 + 0.788691I
2.77377 2.54983I 2.56238 + 3.84090I
u = 0.711976 0.788691I
2.77377 + 2.54983I 2.56238 3.84090I
u = 0.741129 + 0.766184I
3.37856 0.51833I 4.74330 + 3.74158I
u = 0.741129 0.766184I
3.37856 + 0.51833I 4.74330 3.74158I
u = 0.898334 + 0.585827I
0.89223 + 2.27300I 4.11058 2.34862I
u = 0.898334 0.585827I
0.89223 2.27300I 4.11058 + 2.34862I
u = 0.706508 + 0.812636I
6.62164 + 5.35410I 7.68244 4.25676I
u = 0.706508 0.812636I
6.62164 5.35410I 7.68244 + 4.25676I
u = 0.703816 + 0.827557I
16.3321 6.9044I 8.55087 + 2.77192I
u = 0.703816 0.827557I
16.3321 + 6.9044I 8.55087 2.77192I
u = 0.780598 + 0.788930I
7.91993 + 2.45268I 9.54638 3.47883I
u = 0.780598 0.788930I
7.91993 2.45268I 9.54638 + 3.47883I
u = 0.941389 + 0.627556I
1.18896 4.90002I 2.00262 + 7.53056I
u = 0.941389 0.627556I
1.18896 + 4.90002I 2.00262 7.53056I
u = 0.792770 + 0.808036I
17.9061 3.4233I 9.92605 + 2.63045I
u = 0.792770 0.808036I
17.9061 + 3.4233I 9.92605 2.63045I
u = 0.567997 + 0.619087I
10.69110 0.81715I 5.56596 0.12172I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.567997 0.619087I
10.69110 + 0.81715I 5.56596 + 0.12172I
u = 0.984073 + 0.636487I
9.59431 + 5.77095I 0. 5.49289I
u = 0.984073 0.636487I
9.59431 5.77095I 0. + 5.49289I
u = 0.952798 + 0.740289I
7.39031 + 3.31063I 0
u = 0.952798 0.740289I
7.39031 3.31063I 0
u = 0.974166 + 0.713810I
2.66592 5.09809I 0
u = 0.974166 0.713810I
2.66592 + 5.09809I 0
u = 0.952090 + 0.759043I
17.4152 2.4557I 0
u = 0.952090 0.759043I
17.4152 + 2.4557I 0
u = 0.994703 + 0.718854I
1.91508 + 8.24431I 0
u = 0.994703 0.718854I
1.91508 8.24431I 0
u = 1.005020 + 0.728341I
5.71195 11.14500I 0
u = 1.005020 0.728341I
5.71195 + 11.14500I 0
u = 0.654395 + 0.369401I
1.81787 + 0.23650I 4.15811 + 0.08826I
u = 0.654395 0.369401I
1.81787 0.23650I 4.15811 0.08826I
u = 1.011890 + 0.734334I
15.3906 + 12.7564I 0
u = 1.011890 0.734334I
15.3906 12.7564I 0
u = 0.124769 + 0.640044I
13.4136 + 4.6017I 8.93924 3.30114I
u = 0.124769 0.640044I
13.4136 4.6017I 8.93924 + 3.30114I
u = 0.124451 + 0.589584I
3.80539 3.34966I 8.46314 + 5.01124I
u = 0.124451 0.589584I
3.80539 + 3.34966I 8.46314 5.01124I
u = 0.128727 + 0.466132I
0.171113 + 1.087940I 2.68023 5.97711I
u = 0.128727 0.466132I
0.171113 1.087940I 2.68023 + 5.97711I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
u
53
+ 17u
52
+ ··· u + 1
c
2
, c
7
u
53
+ u
52
+ ··· u 1
c
3
u
53
u
52
+ ··· + 13u 1
c
4
, c
5
, c
6
c
10
, c
11
u
53
+ u
52
+ ··· u 1
c
9
u
53
+ 7u
52
+ ··· + 293u + 295
c
12
u
53
+ 5u
52
+ ··· 417u 99
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
53
+ 39y
52
+ ··· + 19y 1
c
2
, c
7
y
53
17y
52
+ ··· y 1
c
3
y
53
+ 3y
52
+ ··· + 47y 1
c
4
, c
5
, c
6
c
10
, c
11
y
53
69y
52
+ ··· y 1
c
9
y
53
+ 23y
52
+ ··· 620381y 87025
c
12
y
53
13y
52
+ ··· + 120231y 9801
8