12a
0722
(K12a
0722
)
A knot diagram
1
Linearized knot diagam
3 8 9 10 11 12 1 2 4 5 6 7
Solving Sequence
2,9
8 3 4 10 5 11 1 7 12 6
c
8
c
2
c
3
c
9
c
4
c
10
c
1
c
7
c
12
c
6
c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
14
u
13
+ 5u
12
4u
11
+ 10u
10
7u
9
+ 7u
8
4u
7
4u
6
+ 2u
5
8u
4
+ 4u
3
2u
2
+ u + 1i
* 1 irreducible components of dim
C
= 0, with total 14 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
14
u
13
+ 5u
12
4u
11
+ 10u
10
7u
9
+ 7u
8
4u
7
4u
6
+ 2u
5
8u
4
+ 4u
3
2u
2
+ u + 1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
u
6
u
4
+ 1
u
6
+ 2u
4
+ u
2
a
5
=
u
9
+ 2u
7
+ u
5
2u
3
u
u
9
3u
7
3u
5
+ u
a
11
=
u
12
+ 3u
10
+ 3u
8
2u
6
4u
4
u
2
+ 1
u
12
4u
10
6u
8
2u
6
+ 3u
4
+ 2u
2
a
1
=
u
3
u
5
+ u
3
+ u
a
7
=
u
6
u
4
+ 1
u
8
2u
6
2u
4
a
12
=
u
9
2u
7
u
5
+ 2u
3
+ u
u
11
3u
9
4u
7
u
5
+ u
3
+ u
a
6
=
u
12
+ 3u
10
+ 3u
8
2u
6
4u
4
u
2
+ 1
u
13
u
12
+ ··· u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
13
+ 4u
12
16u
11
+ 12u
10
24u
9
+ 16u
8
4u
7
+ 20u
5
8u
4
+ 12u
3
8u
2
4u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
14
+ 9u
13
+ ··· 5u + 1
c
2
, c
8
u
14
u
13
+ ··· + u + 1
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
u
14
+ u
13
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
14
7y
13
+ ··· 65y + 1
c
2
, c
8
y
14
+ 9y
13
+ ··· 5y + 1
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y
14
23y
13
+ ··· 5y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.972298
11.0809 15.9440
u = 0.306114 + 1.029060I
3.14696 2.76430I 17.6509 + 6.3298I
u = 0.306114 1.029060I
3.14696 + 2.76430I 17.6509 6.3298I
u = 0.884219
14.9042 15.7550
u = 0.159123 + 0.837990I
0.675258 + 0.985154I 10.63652 6.07794I
u = 0.159123 0.837990I
0.675258 0.985154I 10.63652 + 6.07794I
u = 0.396353 + 1.167340I
9.01747 + 3.99409I 18.9152 4.1194I
u = 0.396353 1.167340I
9.01747 3.99409I 18.9152 + 4.1194I
u = 0.713918
5.61914 15.3500
u = 0.455547 + 1.256230I
18.7410 4.7668I 19.0242 + 3.1632I
u = 0.455547 1.256230I
18.7410 + 4.7668I 19.0242 3.1632I
u = 0.489108 + 1.306520I
7.03257 + 5.19559I 19.0102 2.7600I
u = 0.489108 1.306520I
7.03257 5.19559I 19.0102 + 2.7600I
u = 0.367845
0.678832 14.4770
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
14
+ 9u
13
+ ··· 5u + 1
c
2
, c
8
u
14
u
13
+ ··· + u + 1
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
u
14
+ u
13
+ ··· + 3u + 1
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
14
7y
13
+ ··· 65y + 1
c
2
, c
8
y
14
+ 9y
13
+ ··· 5y + 1
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y
14
23y
13
+ ··· 5y + 1
7