12a
0723
(K12a
0723
)
A knot diagram
1
Linearized knot diagam
3 8 9 10 11 12 1 2 4 5 7 6
Solving Sequence
2,9
8 3 4 10 5 11 1 7 12 6
c
8
c
2
c
3
c
9
c
4
c
10
c
1
c
7
c
11
c
6
c
5
, c
12
Ideals for irreducible components
2
of X
par
I
u
1
= hu
22
u
21
+ ··· 2u + 1i
I
u
2
= hu
9
+ 3u
7
+ u
6
+ 3u
5
+ 2u
4
u
3
+ u
2
2u 1i
* 2 irreducible components of dim
C
= 0, with total 31 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
22
u
21
+ · · · 2u + 1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
u
6
u
4
+ 1
u
6
+ 2u
4
+ u
2
a
5
=
u
9
+ 2u
7
+ u
5
2u
3
u
u
9
3u
7
3u
5
+ u
a
11
=
u
12
+ 3u
10
+ 3u
8
2u
6
4u
4
u
2
+ 1
u
12
4u
10
6u
8
2u
6
+ 3u
4
+ 2u
2
a
1
=
u
3
u
5
+ u
3
+ u
a
7
=
u
6
u
4
+ 1
u
8
2u
6
2u
4
a
12
=
u
14
+ 5u
12
+ 10u
10
+ 7u
8
4u
6
u
5
8u
4
2u
3
2u
2
u + 1
u
21
+ 7u
19
+ ··· + u
2
1
a
6
=
u
15
4u
13
6u
11
+ 8u
7
+ 6u
5
2u
3
2u
u
15
+ 5u
13
+ 10u
11
+ 7u
9
4u
7
8u
5
2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= 4u
21
+ 4u
20
24u
19
+ 24u
18
64u
17
+ 68u
16
80u
15
+ 100u
14
24u
13
+ 68u
12
+
52u
11
16u
10
+ 36u
9
52u
8
28u
7
28u
6
32u
5
+ 8u
4
+ 4u
3
+ 4u
2
+ 4u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
22
+ 13u
21
+ ··· + 2u + 1
c
2
, c
8
u
22
u
21
+ ··· 2u + 1
c
3
, c
4
, c
5
c
7
, c
9
, c
10
u
22
2u
21
+ ··· u + 2
c
6
, c
11
, c
12
u
22
u
21
+ ··· + u
2
+ 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
22
7y
21
+ ··· + 2y + 1
c
2
, c
8
y
22
+ 13y
21
+ ··· + 2y + 1
c
3
, c
4
, c
5
c
7
, c
9
, c
10
y
22
30y
21
+ ··· + 19y + 4
c
6
, c
11
, c
12
y
22
+ 17y
21
+ ··· + 2y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.946141 + 0.011490I
13.5904 5.0425I 10.78024 + 2.84693I
u = 0.946141 0.011490I
13.5904 + 5.0425I 10.78024 2.84693I
u = 0.416424 + 0.993762I
0.95586 + 5.59232I 9.07345 8.52361I
u = 0.416424 0.993762I
0.95586 5.59232I 9.07345 + 8.52361I
u = 0.327821 + 1.035380I
3.20510 2.90050I 16.7585 + 6.2360I
u = 0.327821 1.035380I
3.20510 + 2.90050I 16.7585 6.2360I
u = 0.153534 + 0.829883I
0.664834 + 0.970955I 10.56839 6.31245I
u = 0.153534 0.829883I
0.664834 0.970955I 10.56839 + 6.31245I
u = 0.373530 + 0.720587I
3.67591 1.72367I 3.04572 + 4.67737I
u = 0.373530 0.720587I
3.67591 + 1.72367I 3.04572 4.67737I
u = 0.768463 + 0.066318I
2.56255 + 4.06172I 9.74928 3.64554I
u = 0.768463 0.066318I
2.56255 4.06172I 9.74928 + 3.64554I
u = 0.454887 + 1.179480I
5.83119 8.50268I 12.8572 + 7.0300I
u = 0.454887 1.179480I
5.83119 + 8.50268I 12.8572 7.0300I
u = 0.425814 + 1.198730I
9.89307 + 4.30260I 17.3404 3.7895I
u = 0.425814 1.198730I
9.89307 4.30260I 17.3404 + 3.7895I
u = 0.487685 + 1.287980I
17.5204 + 10.1457I 13.8263 5.6856I
u = 0.487685 1.287980I
17.5204 10.1457I 13.8263 + 5.6856I
u = 0.481775 + 1.292500I
17.8662 5.0843I 17.1007 + 2.8764I
u = 0.481775 1.292500I
17.8662 + 5.0843I 17.1007 2.8764I
u = 0.476877 + 0.292674I
2.80571 1.90068I 4.89982 + 3.73749I
u = 0.476877 0.292674I
2.80571 + 1.90068I 4.89982 3.73749I
5
II. I
u
2
= hu
9
+ 3u
7
+ u
6
+ 3u
5
+ 2u
4
u
3
+ u
2
2u 1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
u
6
u
4
+ 1
u
6
+ 2u
4
+ u
2
a
5
=
u
7
u
6
2u
5
2u
4
u
3
u
2
+ u + 1
u
6
+ 2u
4
u
3
+ u
2
u 1
a
11
=
u
7
+ 2u
5
2u
u
6
2u
4
+ u
3
u
2
+ u + 1
a
1
=
u
3
u
5
+ u
3
+ u
a
7
=
u
6
u
4
+ 1
u
8
2u
6
2u
4
a
12
=
u
5
u
u
7
+ u
5
u
a
6
=
u
4
u
2
+ 1
u
6
2u
4
u
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 14
6
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
9
+ 6u
8
+ 15u
7
+ 15u
6
5u
5
24u
4
13u
3
+ 7u
2
+ 6u 1
c
2
, c
6
, c
8
c
11
, c
12
u
9
+ 3u
7
+ u
6
+ 3u
5
+ 2u
4
u
3
+ u
2
2u 1
c
3
, c
4
, c
5
c
7
, c
9
, c
10
(u
3
+ u
2
2u 1)
3
7
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
9
6y
8
+ ··· + 50y 1
c
2
, c
6
, c
8
c
11
, c
12
y
9
+ 6y
8
+ 15y
7
+ 15y
6
5y
5
24y
4
13y
3
+ 7y
2
+ 6y 1
c
3
, c
4
, c
5
c
7
, c
9
, c
10
(y
3
5y
2
+ 6y 1)
3
8
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.948532
17.6243 14.0000
u = 0.193528 + 1.054680I
0.704972 14.0000
u = 0.193528 1.054680I
0.704972 14.0000
u = 0.777314
6.34475 14.0000
u = 0.388657 + 1.205470I
6.34475 14.0000
u = 0.388657 1.205470I
6.34475 14.0000
u = 0.474266 + 1.294140I
17.6243 14.0000
u = 0.474266 1.294140I
17.6243 14.0000
u = 0.387056
0.704972 14.0000
9
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
(u
9
+ 6u
8
+ 15u
7
+ 15u
6
5u
5
24u
4
13u
3
+ 7u
2
+ 6u 1)
· (u
22
+ 13u
21
+ ··· + 2u + 1)
c
2
, c
8
(u
9
+ 3u
7
+ ··· 2u 1)(u
22
u
21
+ ··· 2u + 1)
c
3
, c
4
, c
5
c
7
, c
9
, c
10
((u
3
+ u
2
2u 1)
3
)(u
22
2u
21
+ ··· u + 2)
c
6
, c
11
, c
12
(u
9
+ 3u
7
+ ··· 2u 1)(u
22
u
21
+ ··· + u
2
+ 1)
10
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
(y
9
6y
8
+ ··· + 50y 1)(y
22
7y
21
+ ··· + 2y + 1)
c
2
, c
8
(y
9
+ 6y
8
+ 15y
7
+ 15y
6
5y
5
24y
4
13y
3
+ 7y
2
+ 6y 1)
· (y
22
+ 13y
21
+ ··· + 2y + 1)
c
3
, c
4
, c
5
c
7
, c
9
, c
10
((y
3
5y
2
+ 6y 1)
3
)(y
22
30y
21
+ ··· + 19y + 4)
c
6
, c
11
, c
12
(y
9
+ 6y
8
+ 15y
7
+ 15y
6
5y
5
24y
4
13y
3
+ 7y
2
+ 6y 1)
· (y
22
+ 17y
21
+ ··· + 2y + 1)
11