12a
0724
(K12a
0724
)
A knot diagram
1
Linearized knot diagam
3 8 9 10 11 12 1 2 4 7 6 5
Solving Sequence
2,9
8 3 4 10 5 1 7 11 12 6
c
8
c
2
c
3
c
9
c
4
c
1
c
7
c
10
c
12
c
6
c
5
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
53
u
52
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 53 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
53
u
52
+ · · · u 1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
4
=
u
3
u
3
+ u
a
10
=
u
6
u
4
+ 1
u
6
+ 2u
4
+ u
2
a
5
=
u
9
+ 2u
7
+ u
5
2u
3
u
u
9
3u
7
3u
5
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
7
=
u
6
u
4
+ 1
u
8
2u
6
2u
4
a
11
=
u
20
5u
18
11u
16
10u
14
+ 2u
12
+ 13u
10
+ 9u
8
2u
6
5u
4
u
2
+ 1
u
22
6u
20
17u
18
26u
16
20u
14
+ 13u
10
+ 10u
8
+ 3u
6
+ 2u
4
+ u
2
a
12
=
u
23
+ 6u
21
+ ··· + 6u
5
+ 2u
3
u
23
7u
21
+ ··· 3u
5
+ u
a
6
=
u
51
+ 14u
49
+ ··· u
3
2u
u
52
u
51
+ ··· + 2u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
52
4u
51
+ ··· 8u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
53
+ 31u
52
+ ··· + 3u 1
c
2
, c
8
u
53
u
52
+ ··· u 1
c
3
, c
4
, c
7
c
9
u
53
+ u
52
+ ··· + 17u 5
c
5
, c
6
, c
11
u
53
u
52
+ ··· 3u 1
c
10
, c
12
u
53
+ 3u
52
+ ··· 15u 3
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
53
17y
52
+ ··· + 35y 1
c
2
, c
8
y
53
+ 31y
52
+ ··· + 3y 1
c
3
, c
4
, c
7
c
9
y
53
65y
52
+ ··· + 899y 25
c
5
, c
6
, c
11
y
53
45y
52
+ ··· + 3y 1
c
10
, c
12
y
53
+ 23y
52
+ ··· + 39y 9
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.128755 + 1.019230I
4.90434 2.79376I 17.4626 + 3.5787I
u = 0.128755 1.019230I
4.90434 + 2.79376I 17.4626 3.5787I
u = 0.911842
15.0851 15.7790
u = 0.452670 + 0.785816I
0.74858 + 5.61733I 7.84958 7.79371I
u = 0.452670 0.785816I
0.74858 5.61733I 7.84958 + 7.79371I
u = 0.904077 + 0.035348I
10.76820 8.15829I 12.92275 + 4.70754I
u = 0.904077 0.035348I
10.76820 + 8.15829I 12.92275 4.70754I
u = 0.894263 + 0.030410I
5.73332 + 4.23818I 8.49578 3.55105I
u = 0.894263 0.030410I
5.73332 4.23818I 8.49578 + 3.55105I
u = 0.435840 + 1.018520I
3.18288 2.63277I 11.73208 + 4.34581I
u = 0.435840 1.018520I
3.18288 + 2.63277I 11.73208 4.34581I
u = 0.270662 + 1.080700I
1.60759 + 0.28866I 11.63603 + 0.60703I
u = 0.270662 1.080700I
1.60759 0.28866I 11.63603 0.60703I
u = 0.885161 + 0.012504I
7.93829 0.20732I 11.52979 0.97702I
u = 0.885161 0.012504I
7.93829 + 0.20732I 11.52979 + 0.97702I
u = 0.366265 + 1.058630I
3.39452 3.18652I 15.1026 + 5.9997I
u = 0.366265 1.058630I
3.39452 + 3.18652I 15.1026 5.9997I
u = 0.438529 + 0.736447I
3.30946 1.89439I 2.29810 + 4.47995I
u = 0.438529 0.736447I
3.30946 + 1.89439I 2.29810 4.47995I
u = 0.459270 + 1.056820I
0.23945 + 6.31415I 8.00000 7.97292I
u = 0.459270 1.056820I
0.23945 6.31415I 8.00000 + 7.97292I
u = 0.271764 + 1.127110I
6.33973 + 3.10223I 16.8942 2.0365I
u = 0.271764 1.127110I
6.33973 3.10223I 16.8942 + 2.0365I
u = 0.471846 + 1.075850I
4.85947 10.15110I 13.4245 + 9.4204I
u = 0.471846 1.075850I
4.85947 + 10.15110I 13.4245 9.4204I
u = 0.147653 + 0.799603I
0.621747 + 0.938340I 10.16569 6.80292I
u = 0.147653 0.799603I
0.621747 0.938340I 10.16569 + 6.80292I
u = 0.443085 + 0.672743I
0.43986 1.77287I 6.55805 0.17659I
u = 0.443085 0.672743I
0.43986 + 1.77287I 6.55805 + 0.17659I
u = 0.386940 + 1.130380I
9.24218 + 3.74726I 18.6066 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.386940 1.130380I
9.24218 3.74726I 18.6066 + 0.I
u = 0.626369 + 0.230684I
2.49578 + 5.92364I 10.03468 5.69400I
u = 0.626369 0.230684I
2.49578 5.92364I 10.03468 + 5.69400I
u = 0.461426 + 1.259080I
11.80210 + 4.57211I 0
u = 0.461426 1.259080I
11.80210 4.57211I 0
u = 0.474991 + 1.254660I
11.70120 + 5.05761I 0
u = 0.474991 1.254660I
11.70120 5.05761I 0
u = 0.452029 + 1.266230I
9.69650 0.52013I 0
u = 0.452029 1.266230I
9.69650 + 0.52013I 0
u = 0.485137 + 1.256070I
9.45189 9.16998I 0
u = 0.485137 1.256070I
9.45189 + 9.16998I 0
u = 0.450332 + 1.273070I
14.7839 3.3745I 0
u = 0.450332 1.273070I
14.7839 + 3.3745I 0
u = 0.489645 + 1.259800I
14.4913 + 13.1415I 0
u = 0.489645 1.259800I
14.4913 13.1415I 0
u = 0.647347
6.05533 14.6560
u = 0.472487 + 1.271320I
18.9745 4.9215I 0
u = 0.472487 1.271320I
18.9745 + 4.9215I 0
u = 0.573524 + 0.250742I
1.98282 2.24507I 4.39655 + 3.93832I
u = 0.573524 0.250742I
1.98282 + 2.24507I 4.39655 3.93832I
u = 0.505614 + 0.326260I
1.29579 1.22009I 7.56412 + 0.50390I
u = 0.505614 0.326260I
1.29579 + 1.22009I 7.56412 0.50390I
u = 0.436579
0.780224 12.8270
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
53
+ 31u
52
+ ··· + 3u 1
c
2
, c
8
u
53
u
52
+ ··· u 1
c
3
, c
4
, c
7
c
9
u
53
+ u
52
+ ··· + 17u 5
c
5
, c
6
, c
11
u
53
u
52
+ ··· 3u 1
c
10
, c
12
u
53
+ 3u
52
+ ··· 15u 3
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
53
17y
52
+ ··· + 35y 1
c
2
, c
8
y
53
+ 31y
52
+ ··· + 3y 1
c
3
, c
4
, c
7
c
9
y
53
65y
52
+ ··· + 899y 25
c
5
, c
6
, c
11
y
53
45y
52
+ ··· + 3y 1
c
10
, c
12
y
53
+ 23y
52
+ ··· + 39y 9
8