12a
0726
(K12a
0726
)
A knot diagram
1
Linearized knot diagam
3 8 9 10 11 12 1 2 7 5 6 4
Solving Sequence
5,11
6 12 7 10 4 1 8 9 3 2
c
5
c
11
c
6
c
10
c
4
c
12
c
7
c
9
c
3
c
2
c
1
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
51
u
50
+ ··· 2u 1i
* 1 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
51
u
50
+ · · · 2u 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
7
=
u
2
+ 1
u
4
+ 2u
2
a
10
=
u
u
a
4
=
u
2
+ 1
u
2
a
1
=
u
7
4u
5
+ 4u
3
2u
u
7
3u
5
+ u
a
8
=
u
18
11u
16
+ 48u
14
107u
12
+ 133u
10
95u
8
+ 34u
6
2u
4
3u
2
+ 1
u
18
10u
16
+ 37u
14
60u
12
+ 35u
10
+ 8u
8
16u
6
+ 2u
4
+ 3u
2
a
9
=
u
7
+ 4u
5
4u
3
+ 2u
u
9
+ 5u
7
7u
5
+ 2u
3
+ u
a
3
=
u
18
11u
16
+ 48u
14
107u
12
+ 133u
10
95u
8
+ 34u
6
2u
4
3u
2
+ 1
u
20
12u
18
+ ··· 5u
4
2u
2
a
2
=
u
45
28u
43
+ ··· + 14u
3
3u
u
47
29u
45
+ ··· + 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
47
120u
45
+ ··· 16u 14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
51
+ 27u
50
+ ··· + 2u 1
c
2
, c
8
u
51
u
50
+ ··· + u
2
1
c
3
, c
7
u
51
+ u
50
+ ··· 40u 13
c
4
, c
5
, c
6
c
10
, c
11
u
51
u
50
+ ··· 2u 1
c
9
, c
12
u
51
5u
50
+ ··· + 42u + 5
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
51
5y
50
+ ··· + 34y 1
c
2
, c
8
y
51
+ 27y
50
+ ··· + 2y 1
c
3
, c
7
y
51
37y
50
+ ··· + 4018y 169
c
4
, c
5
, c
6
c
10
, c
11
y
51
65y
50
+ ··· + 2y 1
c
9
, c
12
y
51
+ 23y
50
+ ··· + 974y 25
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.934654 + 0.359124I
4.89993 + 10.88520I 13.9898 9.1011I
u = 0.934654 0.359124I
4.89993 10.88520I 13.9898 + 9.1011I
u = 0.942251 + 0.324875I
5.98706 + 2.32675I 15.9409 2.8840I
u = 0.942251 0.324875I
5.98706 2.32675I 15.9409 + 2.8840I
u = 0.922701 + 0.345886I
1.94667 6.07625I 10.83807 + 6.02977I
u = 0.922701 0.345886I
1.94667 + 6.07625I 10.83807 6.02977I
u = 1.03108
5.66531 15.3850
u = 1.061590 + 0.031424I
9.08913 + 4.30907I 18.5429 3.7969I
u = 1.061590 0.031424I
9.08913 4.30907I 18.5429 + 3.7969I
u = 0.855219 + 0.348235I
0.95095 5.30967I 8.63248 + 7.99988I
u = 0.855219 0.348235I
0.95095 + 5.30967I 8.63248 7.99988I
u = 0.892740 + 0.163983I
3.77255 2.37268I 17.3684 + 5.1349I
u = 0.892740 0.163983I
3.77255 + 2.37268I 17.3684 5.1349I
u = 0.812894 + 0.338645I
1.22174 + 0.86320I 7.59219 0.99621I
u = 0.812894 0.338645I
1.22174 0.86320I 7.59219 + 0.99621I
u = 0.691855 + 0.295789I
0.586592 0.013554I 8.91489 1.65499I
u = 0.691855 0.295789I
0.586592 + 0.013554I 8.91489 + 1.65499I
u = 0.657710 + 0.357951I
3.33920 + 4.49491I 12.31496 1.64994I
u = 0.657710 0.357951I
3.33920 4.49491I 12.31496 + 1.64994I
u = 0.540749 + 0.318050I
3.97102 3.50003I 13.5801 + 5.9294I
u = 0.540749 0.318050I
3.97102 + 3.50003I 13.5801 5.9294I
u = 0.115498 + 0.577206I
1.68827 7.70971I 8.54080 + 7.04880I
u = 0.115498 0.577206I
1.68827 + 7.70971I 8.54080 7.04880I
u = 0.100340 + 0.556105I
1.17823 + 3.01006I 4.93958 3.82395I
u = 0.100340 0.556105I
1.17823 3.01006I 4.93958 + 3.82395I
u = 0.020722 + 0.563068I
3.60258 + 2.21222I 2.70323 3.95953I
u = 0.020722 0.563068I
3.60258 2.21222I 2.70323 + 3.95953I
u = 0.139590 + 0.529892I
2.67990 + 0.58466I 10.09274 + 1.02853I
u = 0.139590 0.529892I
2.67990 0.58466I 10.09274 1.02853I
u = 0.520487
0.898575 10.9920
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.63571 + 0.03530I
11.22280 3.45035I 0
u = 1.63571 0.03530I
11.22280 + 3.45035I 0
u = 1.65326 + 0.04846I
8.88936 1.01253I 0
u = 1.65326 0.04846I
8.88936 + 1.01253I 0
u = 0.204173 + 0.278298I
0.541427 + 0.901076I 9.58787 7.23419I
u = 0.204173 0.278298I
0.541427 0.901076I 9.58787 + 7.23419I
u = 1.66447 + 0.07584I
7.44083 2.35904I 0
u = 1.66447 0.07584I
7.44083 + 2.35904I 0
u = 1.67378 + 0.08451I
7.89647 + 6.93113I 0
u = 1.67378 0.08451I
7.89647 6.93113I 0
u = 1.68671 + 0.04546I
12.89560 + 3.20312I 0
u = 1.68671 0.04546I
12.89560 3.20312I 0
u = 1.69407 + 0.08990I
11.14410 + 7.77795I 0
u = 1.69407 0.08990I
11.14410 7.77795I 0
u = 1.69703 + 0.09424I
14.1457 12.6661I 0
u = 1.69703 0.09424I
14.1457 + 12.6661I 0
u = 1.69987 + 0.08445I
15.2980 3.9376I 0
u = 1.69987 0.08445I
15.2980 + 3.9376I 0
u = 1.71763
15.4613 0
u = 1.72344 + 0.00640I
19.0178 4.4514I 0
u = 1.72344 0.00640I
19.0178 + 4.4514I 0
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
51
+ 27u
50
+ ··· + 2u 1
c
2
, c
8
u
51
u
50
+ ··· + u
2
1
c
3
, c
7
u
51
+ u
50
+ ··· 40u 13
c
4
, c
5
, c
6
c
10
, c
11
u
51
u
50
+ ··· 2u 1
c
9
, c
12
u
51
5u
50
+ ··· + 42u + 5
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
51
5y
50
+ ··· + 34y 1
c
2
, c
8
y
51
+ 27y
50
+ ··· + 2y 1
c
3
, c
7
y
51
37y
50
+ ··· + 4018y 169
c
4
, c
5
, c
6
c
10
, c
11
y
51
65y
50
+ ··· + 2y 1
c
9
, c
12
y
51
+ 23y
50
+ ··· + 974y 25
8