12a
0728
(K12a
0728
)
A knot diagram
1
Linearized knot diagam
3 8 9 10 11 1 2 7 12 5 6 4
Solving Sequence
5,11
6 12 10 4 1 7 9 3 8 2
c
5
c
11
c
10
c
4
c
12
c
6
c
9
c
3
c
8
c
2
c
1
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
66
+ u
65
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 66 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
66
+ u
65
+ · · · + u + 1i
(i) Arc colorings
a
5
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
10
=
u
u
a
4
=
u
2
+ 1
u
2
a
1
=
u
7
4u
5
+ 4u
3
u
7
+ 3u
5
2u
3
+ u
a
7
=
u
16
9u
14
+ 31u
12
50u
10
+ 37u
8
12u
6
+ 4u
4
+ 1
u
16
+ 8u
14
24u
12
+ 34u
10
26u
8
+ 14u
6
4u
4
a
9
=
u
5
2u
3
u
u
7
+ 3u
5
2u
3
+ u
a
3
=
u
14
+ 7u
12
16u
10
+ 11u
8
+ 2u
6
+ 1
u
16
8u
14
+ 24u
12
34u
10
+ 26u
8
14u
6
+ 4u
4
a
8
=
u
39
+ 22u
37
+ ··· + 8u
5
4u
3
u
39
21u
37
+ ··· 2u
3
+ u
a
2
=
u
37
+ 20u
35
+ ··· + 6u
3
u
u
39
21u
37
+ ··· 2u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
64
+ 148u
62
+ ··· + 8u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
66
+ 23u
65
+ ··· + 3u + 1
c
2
, c
7
u
66
+ u
65
+ ··· + u + 1
c
3
, c
6
u
66
u
65
+ ··· 31u + 13
c
4
, c
5
, c
10
c
11
u
66
+ u
65
+ ··· + u + 1
c
9
u
66
+ 17u
65
+ ··· 47u 1
c
12
u
66
5u
65
+ ··· 87u + 99
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
66
+ 41y
65
+ ··· + 25y + 1
c
2
, c
7
y
66
23y
65
+ ··· 3y + 1
c
3
, c
6
y
66
43y
65
+ ··· 779y + 169
c
4
, c
5
, c
10
c
11
y
66
75y
65
+ ··· 3y + 1
c
9
y
66
3y
65
+ ··· 1027y + 1
c
12
y
66
+ 13y
65
+ ··· + 97965y + 9801
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.679043 + 0.513026I
0.55757 + 11.85450I 1.19937 10.55626I
u = 0.679043 0.513026I
0.55757 11.85450I 1.19937 + 10.55626I
u = 0.677457 + 0.502396I
0.69647 6.29635I 0.87137 + 6.02383I
u = 0.677457 0.502396I
0.69647 + 6.29635I 0.87137 6.02383I
u = 0.827357 + 0.134311I
1.73099 + 5.80754I 2.42706 4.28002I
u = 0.827357 0.134311I
1.73099 5.80754I 2.42706 + 4.28002I
u = 0.651675 + 0.512229I
5.26765 + 5.51347I 6.43351 6.58815I
u = 0.651675 0.512229I
5.26765 5.51347I 6.43351 + 6.58815I
u = 0.723236 + 0.392345I
4.90890 5.70748I 4.77595 + 8.10333I
u = 0.723236 0.392345I
4.90890 + 5.70748I 4.77595 8.10333I
u = 0.729599 + 0.367618I
5.06598 + 0.17301I 5.53090 1.90980I
u = 0.729599 0.367618I
5.06598 0.17301I 5.53090 + 1.90980I
u = 0.787704 + 0.158558I
2.78482 0.42194I 4.71831 0.92383I
u = 0.787704 0.158558I
2.78482 + 0.42194I 4.71831 + 0.92383I
u = 0.613057 + 0.504763I
1.89419 0.91996I 3.47927 1.04849I
u = 0.613057 0.504763I
1.89419 + 0.91996I 3.47927 + 1.04849I
u = 0.633845 + 0.477974I
0.41391 3.88997I 0.23971 + 6.90287I
u = 0.633845 0.477974I
0.41391 + 3.88997I 0.23971 6.90287I
u = 0.792968
2.47755 2.65410
u = 0.568943 + 0.415813I
0.39703 3.45284I 3.45398 + 8.62120I
u = 0.568943 0.415813I
0.39703 + 3.45284I 3.45398 8.62120I
u = 0.613967 + 0.254014I
1.141260 + 0.707260I 5.14650 1.61154I
u = 0.613967 0.254014I
1.141260 0.707260I 5.14650 + 1.61154I
u = 0.305227 + 0.549680I
2.79055 + 4.56037I 6.01762 5.67931I
u = 0.305227 0.549680I
2.79055 4.56037I 6.01762 + 5.67931I
u = 0.257589 + 0.569515I
6.41719 1.79856I 9.70751 + 0.42464I
u = 0.257589 0.569515I
6.41719 + 1.79856I 9.70751 0.42464I
u = 0.219617 + 0.585188I
1.89948 8.09919I 4.62425 + 5.17915I
u = 0.219617 0.585188I
1.89948 + 8.09919I 4.62425 5.17915I
u = 0.214284 + 0.568263I
0.65140 + 2.62175I 2.68943 0.54084I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.214284 0.568263I
0.65140 2.62175I 2.68943 + 0.54084I
u = 0.283990 + 0.514586I
1.43586 + 0.43361I 4.03138 + 0.14632I
u = 0.283990 0.514586I
1.43586 0.43361I 4.03138 0.14632I
u = 1.41960
1.56697 0
u = 1.42823 + 0.03822I
2.50333 6.46643I 0
u = 1.42823 0.03822I
2.50333 + 6.46643I 0
u = 1.44500 + 0.02800I
3.88317 + 1.19867I 0
u = 1.44500 0.02800I
3.88317 1.19867I 0
u = 0.022017 + 0.498619I
2.90632 + 2.69811I 0.00578 3.20875I
u = 0.022017 0.498619I
2.90632 2.69811I 0.00578 + 3.20875I
u = 0.289584 + 0.387063I
1.153330 + 0.503988I 7.19528 0.72282I
u = 0.289584 0.387063I
1.153330 0.503988I 7.19528 + 0.72282I
u = 1.56691 + 0.04064I
5.24690 + 0.15185I 0
u = 1.56691 0.04064I
5.24690 0.15185I 0
u = 1.56474 + 0.10431I
6.81950 + 5.27330I 0
u = 1.56474 0.10431I
6.81950 5.27330I 0
u = 1.57332 + 0.14112I
5.46608 1.41931I 0
u = 1.57332 0.14112I
5.46608 + 1.41931I 0
u = 1.58537 + 0.07956I
8.69743 1.98171I 0
u = 1.58537 0.07956I
8.69743 + 1.98171I 0
u = 1.58430 + 0.13594I
7.09486 + 6.13313I 0
u = 1.58430 0.13594I
7.09486 6.13313I 0
u = 1.58678 + 0.14853I
2.28564 7.94476I 0
u = 1.58678 0.14853I
2.28564 + 7.94476I 0
u = 1.59661 + 0.14658I
8.39199 + 8.70234I 0
u = 1.59661 0.14658I
8.39199 8.70234I 0
u = 1.59684 + 0.15037I
7.1378 14.3160I 0
u = 1.59684 0.15037I
7.1378 + 14.3160I 0
u = 1.60867 + 0.05463I
10.92240 0.43188I 0
u = 1.60867 0.05463I
10.92240 + 0.43188I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.61183 + 0.04577I
9.98754 5.09815I 0
u = 1.61183 0.04577I
9.98754 + 5.09815I 0
u = 1.60946 + 0.11086I
12.8693 + 7.5849I 0
u = 1.60946 0.11086I
12.8693 7.5849I 0
u = 1.61013 + 0.10411I
13.05570 1.93744I 0
u = 1.61013 0.10411I
13.05570 + 1.93744I 0
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
8
u
66
+ 23u
65
+ ··· + 3u + 1
c
2
, c
7
u
66
+ u
65
+ ··· + u + 1
c
3
, c
6
u
66
u
65
+ ··· 31u + 13
c
4
, c
5
, c
10
c
11
u
66
+ u
65
+ ··· + u + 1
c
9
u
66
+ 17u
65
+ ··· 47u 1
c
12
u
66
5u
65
+ ··· 87u + 99
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
66
+ 41y
65
+ ··· + 25y + 1
c
2
, c
7
y
66
23y
65
+ ··· 3y + 1
c
3
, c
6
y
66
43y
65
+ ··· 779y + 169
c
4
, c
5
, c
10
c
11
y
66
75y
65
+ ··· 3y + 1
c
9
y
66
3y
65
+ ··· 1027y + 1
c
12
y
66
+ 13y
65
+ ··· + 97965y + 9801
9