12a
0730
(K12a
0730
)
A knot diagram
1
Linearized knot diagam
3 8 9 10 11 1 12 2 6 5 4 7
Solving Sequence
4,10
5 11 6
7,12
8 1 9 3 2
c
4
c
10
c
5
c
11
c
7
c
12
c
9
c
3
c
2
c
1
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= hu
55
23u
53
+ ··· + 4b + 2u, u
53
22u
51
+ ··· + 4a 4, u
58
+ 2u
57
+ ··· u + 2i
I
u
2
= h2093u
7
a
2
394u
7
a + ··· + 1311a 1282, 2u
7
a
2
4u
7
a + ··· + 6a 1,
u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
I
u
3
= h−u
5
+ u
4
+ 2u
3
2u
2
+ b u, u
5
3u
3
+ a + 2u, u
6
3u
4
+ 2u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 88 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
55
23u
53
+· · ·+4b+2u, u
53
22u
51
+· · ·+4a4, u
58
+2u
57
+· · ·−u+2i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
1
4
u
53
+
11
2
u
51
+ ··· +
1
4
u + 1
1
4
u
55
+
23
4
u
53
+ ··· +
5
2
u
2
1
2
u
a
12
=
u
3
2u
u
3
+ u
a
8
=
1
2
u
57
+ u
56
+ ··· +
1
4
u + 1
u
57
u
56
+ ··· +
1
2
u 1
a
1
=
1
4
u
54
23
4
u
52
+ ···
5
2
u +
1
2
1
4
u
54
+
11
2
u
52
+ ··· +
1
4
u
2
+ u
a
9
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
3
=
u
12
+ 5u
10
9u
8
+ 6u
6
u
2
+ 1
u
14
+ 6u
12
13u
10
+ 10u
8
+ 2u
6
4u
4
u
2
a
2
=
1
4
u
51
+
11
2
u
49
+ ···
9
4
u + 1
1
4
u
51
21
4
u
49
+ ···
1
2
u
2
+
1
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2u
57
+ 48u
55
+ ··· + 10u
2
14
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
58
+ 27u
57
+ ··· + 240u + 25
c
2
, c
8
u
58
u
57
+ ··· 10u + 5
c
3
u
58
2u
57
+ ··· 18880u + 3200
c
4
, c
5
, c
10
u
58
+ 2u
57
+ ··· u + 2
c
6
, c
7
, c
12
u
58
u
57
+ ··· 32u + 5
c
9
, c
11
u
58
6u
57
+ ··· 608u + 128
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
58
+ 15y
57
+ ··· + 14700y + 625
c
2
, c
8
y
58
+ 27y
57
+ ··· + 240y + 25
c
3
y
58
18y
57
+ ··· 108646400y + 10240000
c
4
, c
5
, c
10
y
58
48y
57
+ ··· + 19y + 4
c
6
, c
7
, c
12
y
58
+ 55y
57
+ ··· 624y + 25
c
9
, c
11
y
58
+ 32y
57
+ ··· + 31744y + 16384
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.055470 + 0.361002I
a = 1.72697 1.44530I
b = 1.84334 1.14825I
2.13911 7.31160I 0
u = 1.055470 0.361002I
a = 1.72697 + 1.44530I
b = 1.84334 + 1.14825I
2.13911 + 7.31160I 0
u = 1.079220 + 0.287984I
a = 0.543736 0.144608I
b = 0.874982 0.215155I
3.05587 + 3.30062I 0
u = 1.079220 0.287984I
a = 0.543736 + 0.144608I
b = 0.874982 + 0.215155I
3.05587 3.30062I 0
u = 1.113240 + 0.346536I
a = 1.83136 + 1.57124I
b = 2.11612 + 1.33467I
4.49527 + 1.92718I 0
u = 1.113240 0.346536I
a = 1.83136 1.57124I
b = 2.11612 1.33467I
4.49527 1.92718I 0
u = 0.160239 + 0.809860I
a = 3.28036 + 1.61495I
b = 2.76593 0.91652I
4.87856 + 11.59130I 4.05373 7.92500I
u = 0.160239 0.809860I
a = 3.28036 1.61495I
b = 2.76593 + 0.91652I
4.87856 11.59130I 4.05373 + 7.92500I
u = 0.022956 + 0.824654I
a = 4.22626 0.30258I
b = 3.31540 + 0.17209I
10.56110 2.82315I 0.41076 + 3.01430I
u = 0.022956 0.824654I
a = 4.22626 + 0.30258I
b = 3.31540 0.17209I
10.56110 + 2.82315I 0.41076 3.01430I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.128868 + 0.804285I
a = 3.63497 1.53514I
b = 2.97126 + 0.87331I
7.48930 6.12555I 0.79979 + 4.12406I
u = 0.128868 0.804285I
a = 3.63497 + 1.53514I
b = 2.97126 0.87331I
7.48930 + 6.12555I 0.79979 4.12406I
u = 0.147502 + 0.778831I
a = 1.128860 + 0.689994I
b = 0.932523 0.020123I
0.24972 7.28256I 7.79026 + 7.04615I
u = 0.147502 0.778831I
a = 1.128860 0.689994I
b = 0.932523 + 0.020123I
0.24972 + 7.28256I 7.79026 7.04615I
u = 0.672408 + 0.378683I
a = 0.49133 + 1.34433I
b = 0.425204 + 0.224307I
1.18428 + 7.12571I 7.47098 7.52133I
u = 0.672408 0.378683I
a = 0.49133 1.34433I
b = 0.425204 0.224307I
1.18428 7.12571I 7.47098 + 7.52133I
u = 0.013221 + 0.738470I
a = 0.751533 0.518009I
b = 0.817557 + 0.051451I
3.40366 + 1.43308I 1.61750 4.02310I
u = 0.013221 0.738470I
a = 0.751533 + 0.518009I
b = 0.817557 0.051451I
3.40366 1.43308I 1.61750 + 4.02310I
u = 0.280682 + 0.663131I
a = 0.264754 + 0.958031I
b = 0.667970 0.059101I
2.50446 3.37914I 4.75082 + 2.18121I
u = 0.280682 0.663131I
a = 0.264754 0.958031I
b = 0.667970 + 0.059101I
2.50446 + 3.37914I 4.75082 2.18121I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.236100 + 0.370704I
a = 1.56436 + 2.14598I
b = 3.06777 + 0.90490I
6.81501 1.47559I 0
u = 1.236100 0.370704I
a = 1.56436 2.14598I
b = 3.06777 0.90490I
6.81501 + 1.47559I 0
u = 1.254450 + 0.308524I
a = 0.014085 0.736150I
b = 0.658157 0.385748I
0.43433 5.22268I 0
u = 1.254450 0.308524I
a = 0.014085 + 0.736150I
b = 0.658157 + 0.385748I
0.43433 + 5.22268I 0
u = 1.287890 + 0.180041I
a = 0.733143 0.305909I
b = 0.596300 0.730533I
4.90932 2.79468I 0
u = 1.287890 0.180041I
a = 0.733143 + 0.305909I
b = 0.596300 + 0.730533I
4.90932 + 2.79468I 0
u = 0.175184 + 0.669008I
a = 1.32336 + 0.54960I
b = 0.906192 + 0.070742I
1.76183 + 0.33500I 10.67327 + 0.51437I
u = 0.175184 0.669008I
a = 1.32336 0.54960I
b = 0.906192 0.070742I
1.76183 0.33500I 10.67327 0.51437I
u = 0.650108 + 0.232781I
a = 0.150677 0.390107I
b = 0.732516 + 0.177916I
3.55630 3.54967I 13.4561 + 5.7470I
u = 0.650108 0.232781I
a = 0.150677 + 0.390107I
b = 0.732516 0.177916I
3.55630 + 3.54967I 13.4561 5.7470I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.283030 + 0.296425I
a = 0.368173 + 0.033928I
b = 0.946623 + 0.546835I
0.62219 + 2.29529I 0
u = 1.283030 0.296425I
a = 0.368173 0.033928I
b = 0.946623 0.546835I
0.62219 2.29529I 0
u = 1.275740 + 0.370203I
a = 1.29830 2.30847I
b = 3.30928 0.54212I
6.52568 + 7.11793I 0
u = 1.275740 0.370203I
a = 1.29830 + 2.30847I
b = 3.30928 + 0.54212I
6.52568 7.11793I 0
u = 0.535752 + 0.365918I
a = 0.36495 1.47581I
b = 0.553992 0.181156I
3.29520 2.38278I 4.28188 + 3.63346I
u = 0.535752 0.365918I
a = 0.36495 + 1.47581I
b = 0.553992 + 0.181156I
3.29520 + 2.38278I 4.28188 3.63346I
u = 0.322023 + 0.539515I
a = 0.085417 1.114740I
b = 0.650618 0.010802I
4.03344 0.91043I 2.12378 + 4.36430I
u = 0.322023 0.539515I
a = 0.085417 + 1.114740I
b = 0.650618 + 0.010802I
4.03344 + 0.91043I 2.12378 4.36430I
u = 1.381860 + 0.067257I
a = 0.298361 0.582536I
b = 1.14365 + 1.03316I
2.65450 + 3.62930I 0
u = 1.381860 0.067257I
a = 0.298361 + 0.582536I
b = 1.14365 1.03316I
2.65450 3.62930I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.354170 + 0.284240I
a = 0.282971 + 0.964369I
b = 1.050160 + 0.253647I
6.57455 + 3.16360I 0
u = 1.354170 0.284240I
a = 0.282971 0.964369I
b = 1.050160 0.253647I
6.57455 3.16360I 0
u = 1.370230 + 0.194123I
a = 0.013281 0.259852I
b = 1.010250 + 0.806222I
1.25158 + 3.51548I 0
u = 1.370230 0.194123I
a = 0.013281 + 0.259852I
b = 1.010250 0.806222I
1.25158 3.51548I 0
u = 1.347860 + 0.346662I
a = 0.54429 2.41322I
b = 3.45164 + 0.39084I
2.84200 + 10.27730I 0
u = 1.347860 0.346662I
a = 0.54429 + 2.41322I
b = 3.45164 0.39084I
2.84200 10.27730I 0
u = 1.355220 + 0.332018I
a = 0.151021 + 0.986947I
b = 0.899192 + 0.120955I
4.98693 + 11.30040I 0
u = 1.355220 0.332018I
a = 0.151021 0.986947I
b = 0.899192 0.120955I
4.98693 11.30040I 0
u = 1.402640 + 0.030948I
a = 0.621414 0.054979I
b = 0.624989 + 0.196548I
9.84382 + 4.17376I 0
u = 1.402640 0.030948I
a = 0.621414 + 0.054979I
b = 0.624989 0.196548I
9.84382 4.17376I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.365450 + 0.346164I
a = 0.39863 + 2.28058I
b = 3.29230 0.55110I
0.0648 15.7631I 0
u = 1.365450 0.346164I
a = 0.39863 2.28058I
b = 3.29230 + 0.55110I
0.0648 + 15.7631I 0
u = 1.387300 + 0.259107I
a = 0.215334 + 0.244520I
b = 1.053360 0.706502I
2.76639 + 0.04256I 0
u = 1.387300 0.259107I
a = 0.215334 0.244520I
b = 1.053360 + 0.706502I
2.76639 0.04256I 0
u = 1.42580 + 0.05543I
a = 0.187121 + 0.701410I
b = 1.22349 0.96601I
5.43020 8.23971I 0
u = 1.42580 0.05543I
a = 0.187121 0.701410I
b = 1.22349 + 0.96601I
5.43020 + 8.23971I 0
u = 0.205515 + 0.291758I
a = 1.197660 + 0.567196I
b = 0.081785 0.431720I
0.619748 + 0.918576I 10.20880 7.11535I
u = 0.205515 0.291758I
a = 1.197660 0.567196I
b = 0.081785 + 0.431720I
0.619748 0.918576I 10.20880 + 7.11535I
10
II. I
u
2
= h2093u
7
a
2
394u
7
a + · · · + 1311a 1282, 2u
7
a
2
4u
7
a + · · · +
6a 1, u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
a
0.699298a
2
u
7
+ 0.131640au
7
+ ··· 0.438022a + 0.428333
a
12
=
u
3
2u
u
3
+ u
a
8
=
0.188774a
2
u
7
+ 0.106248au
7
+ ··· + 0.991647a 1.14668
0.358503a
2
u
7
+ 0.214166au
7
+ ··· 0.334447a + 1.04711
a
1
=
0.193451a
2
u
7
+ 0.438022au
7
+ ··· 0.911794a + 0.668894
au
a
9
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
3
=
u
3
2u
u
3
+ u
a
2
=
0.374206a
2
u
7
0.458403au
7
+ ··· 0.611761a 0.222519
0.558637a
2
u
7
+ 0.715670au
7
+ ··· 0.320414a + 0.653525
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
6
+ 12u
4
+ 4u
3
8u
2
8u 14
11
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
24
+ 16u
23
+ ··· 4u + 1
c
2
, c
6
, c
7
c
8
, c
12
u
24
+ 8u
22
+ ··· 2u 1
c
3
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
3
c
4
, c
5
, c
10
(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
3
c
9
, c
11
(u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
3
12
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
24
16y
23
+ ··· 20y + 1
c
2
, c
6
, c
7
c
8
, c
12
y
24
+ 16y
23
+ ··· 4y + 1
c
3
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
3
c
4
, c
5
, c
10
(y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
3
c
9
, c
11
(y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
3
13
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.180120 + 0.268597I
a = 0.283758 + 0.634812I
b = 0.459071 + 0.556325I
1.04066 + 1.13123I 7.41522 0.51079I
u = 1.180120 + 0.268597I
a = 0.519143 + 0.133347I
b = 0.839838 + 0.369976I
1.04066 + 1.13123I 7.41522 0.51079I
u = 1.180120 + 0.268597I
a = 2.48773 1.66933I
b = 2.44064 2.38764I
1.04066 + 1.13123I 7.41522 0.51079I
u = 1.180120 0.268597I
a = 0.283758 0.634812I
b = 0.459071 0.556325I
1.04066 1.13123I 7.41522 + 0.51079I
u = 1.180120 0.268597I
a = 0.519143 0.133347I
b = 0.839838 0.369976I
1.04066 1.13123I 7.41522 + 0.51079I
u = 1.180120 0.268597I
a = 2.48773 + 1.66933I
b = 2.44064 + 2.38764I
1.04066 1.13123I 7.41522 + 0.51079I
u = 0.108090 + 0.747508I
a = 0.536114 + 0.684251I
b = 0.769284 0.082442I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.108090 + 0.747508I
a = 1.086910 0.593279I
b = 0.893968 + 0.013597I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.108090 + 0.747508I
a = 4.33823 + 2.20659I
b = 3.37373 1.26294I
2.15941 + 2.57849I 4.27708 3.56796I
u = 0.108090 0.747508I
a = 0.536114 0.684251I
b = 0.769284 + 0.082442I
2.15941 2.57849I 4.27708 + 3.56796I
14
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.108090 0.747508I
a = 1.086910 + 0.593279I
b = 0.893968 0.013597I
2.15941 2.57849I 4.27708 + 3.56796I
u = 0.108090 0.747508I
a = 4.33823 2.20659I
b = 3.37373 + 1.26294I
2.15941 2.57849I 4.27708 + 3.56796I
u = 1.37100
a = 0.478541 + 0.816744I
b = 1.31000 1.17794I
6.50273 13.8640
u = 1.37100
a = 0.478541 0.816744I
b = 1.31000 + 1.17794I
6.50273 13.8640
u = 1.37100
a = 0.656575
b = 0.423632
6.50273 13.8640
u = 1.334530 + 0.318930I
a = 0.162462 0.927232I
b = 0.882181 0.209095I
2.37968 6.44354I 9.42845 + 5.29417I
u = 1.334530 + 0.318930I
a = 0.367019 + 0.108941I
b = 1.033880 0.589591I
2.37968 6.44354I 9.42845 + 5.29417I
u = 1.334530 + 0.318930I
a = 0.47028 + 2.85958I
b = 3.97967 0.51225I
2.37968 6.44354I 9.42845 + 5.29417I
u = 1.334530 0.318930I
a = 0.162462 + 0.927232I
b = 0.882181 + 0.209095I
2.37968 + 6.44354I 9.42845 5.29417I
u = 1.334530 0.318930I
a = 0.367019 0.108941I
b = 1.033880 + 0.589591I
2.37968 + 6.44354I 9.42845 5.29417I
15
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.334530 0.318930I
a = 0.47028 2.85958I
b = 3.97967 + 0.51225I
2.37968 + 6.44354I 9.42845 5.29417I
u = 0.463640
a = 0.308333
b = 0.453402
0.845036 11.8940
u = 0.463640
a = 1.21764 + 2.13829I
b = 0.830005 + 0.371154I
0.845036 11.8940
u = 0.463640
a = 1.21764 2.13829I
b = 0.830005 0.371154I
0.845036 11.8940
16
III.
I
u
3
= h−u
5
+ u
4
+ 2u
3
2u
2
+ b u, u
5
3u
3
+ a + 2u, u
6
3u
4
+ 2u
2
+ 1i
(i) Arc colorings
a
4
=
1
0
a
10
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
6
=
u
2
+ 1
u
4
+ 2u
2
a
7
=
u
5
+ 3u
3
2u
u
5
u
4
2u
3
+ 2u
2
+ u
a
12
=
u
3
2u
u
3
+ u
a
8
=
u
5
+ 3u
3
+ u
2
2u 1
u
5
2u
3
+ u
a
1
=
u
4
+ u
3
2u
2
2u + 1
1
a
9
=
u
5
2u
3
+ u
0
a
3
=
1
0
a
2
=
u
4
+ u
3
2u
2
2u + 2
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
8u
2
8
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
6
c
2
, c
6
, c
7
c
8
, c
12
(u
2
+ 1)
3
c
3
u
6
c
4
, c
5
, c
10
u
6
3u
4
+ 2u
2
+ 1
c
9
, c
11
u
6
+ u
4
+ 2u
2
+ 1
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
6
c
2
, c
6
, c
7
c
8
, c
12
(y + 1)
6
c
3
y
6
c
4
, c
5
, c
10
(y
3
3y
2
+ 2y + 1)
2
c
9
, c
11
(y
3
+ y
2
+ 2y + 1)
2
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.307140 + 0.215080I
a = 0.744862 0.122561I
b = 0.877439 + 0.255138I
3.02413 2.82812I 11.50976 + 2.97945I
u = 1.307140 0.215080I
a = 0.744862 + 0.122561I
b = 0.877439 0.255138I
3.02413 + 2.82812I 11.50976 2.97945I
u = 1.307140 + 0.215080I
a = 0.744862 0.122561I
b = 0.87744 + 1.74486I
3.02413 + 2.82812I 11.50976 2.97945I
u = 1.307140 0.215080I
a = 0.744862 + 0.122561I
b = 0.87744 1.74486I
3.02413 2.82812I 11.50976 + 2.97945I
u = 0.569840I
a = 1.75488I
b = 0.754878 + 1.000000I
1.11345 4.98050
u = 0.569840I
a = 1.75488I
b = 0.754878 1.000000I
1.11345 4.98050
20
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u 1)
6
)(u
24
+ 16u
23
+ ··· 4u + 1)(u
58
+ 27u
57
+ ··· + 240u + 25)
c
2
, c
8
((u
2
+ 1)
3
)(u
24
+ 8u
22
+ ··· 2u 1)(u
58
u
57
+ ··· 10u + 5)
c
3
u
6
(u
8
+ u
7
u
6
2u
5
+ u
4
+ 2u
3
2u 1)
3
· (u
58
2u
57
+ ··· 18880u + 3200)
c
4
, c
5
, c
10
(u
6
3u
4
+ 2u
2
+ 1)(u
8
u
7
3u
6
+ 2u
5
+ 3u
4
2u 1)
3
· (u
58
+ 2u
57
+ ··· u + 2)
c
6
, c
7
, c
12
((u
2
+ 1)
3
)(u
24
+ 8u
22
+ ··· 2u 1)(u
58
u
57
+ ··· 32u + 5)
c
9
, c
11
(u
6
+ u
4
+ 2u
2
+ 1)
· (u
8
+ 3u
7
+ 7u
6
+ 10u
5
+ 11u
4
+ 10u
3
+ 6u
2
+ 4u + 1)
3
· (u
58
6u
57
+ ··· 608u + 128)
21
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
6
)(y
24
16y
23
+ ··· 20y + 1)
· (y
58
+ 15y
57
+ ··· + 14700y + 625)
c
2
, c
8
((y + 1)
6
)(y
24
+ 16y
23
+ ··· 4y + 1)(y
58
+ 27y
57
+ ··· + 240y + 25)
c
3
y
6
(y
8
3y
7
+ 7y
6
10y
5
+ 11y
4
10y
3
+ 6y
2
4y + 1)
3
· (y
58
18y
57
+ ··· 108646400y + 10240000)
c
4
, c
5
, c
10
(y
3
3y
2
+ 2y + 1)
2
· (y
8
7y
7
+ 19y
6
22y
5
+ 3y
4
+ 14y
3
6y
2
4y + 1)
3
· (y
58
48y
57
+ ··· + 19y + 4)
c
6
, c
7
, c
12
((y + 1)
6
)(y
24
+ 16y
23
+ ··· 4y + 1)(y
58
+ 55y
57
+ ··· 624y + 25)
c
9
, c
11
(y
3
+ y
2
+ 2y + 1)
2
· (y
8
+ 5y
7
+ 11y
6
+ 6y
5
17y
4
34y
3
22y
2
4y + 1)
3
· (y
58
+ 32y
57
+ ··· + 31744y + 16384)
22