12a
0732
(K12a
0732
)
A knot diagram
1
Linearized knot diagam
3 8 9 10 12 11 2 1 4 7 6 5
Solving Sequence
7,11
6 12 5 1 10 4 9 3 2 8
c
6
c
11
c
5
c
12
c
10
c
4
c
9
c
3
c
1
c
8
c
2
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
47
+ u
46
+ ··· + 2u + 1i
* 1 irreducible components of dim
C
= 0, with total 47 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
47
+ u
46
+ · · · + 2u + 1i
(i) Arc colorings
a
7
=
1
0
a
11
=
0
u
a
6
=
1
u
2
a
12
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
3
+ 2u
u
5
+ 3u
3
+ u
a
10
=
u
u
a
4
=
u
6
3u
4
+ 1
u
6
+ 4u
4
+ 3u
2
a
9
=
u
11
+ 6u
9
+ 10u
7
+ 2u
5
3u
3
2u
u
11
7u
9
16u
7
13u
5
3u
3
+ u
a
3
=
u
16
+ 9u
14
+ 29u
12
+ 38u
10
+ 13u
8
10u
6
12u
4
2u
2
+ 1
u
16
10u
14
38u
12
68u
10
58u
8
20u
6
+ 4u
4
+ 4u
2
a
2
=
u
37
22u
35
+ ··· + 10u
3
+ u
u
37
+ 23u
35
+ ··· u
3
+ u
a
8
=
u
19
+ 12u
17
+ ··· 11u
3
2u
u
21
+ 13u
19
+ ··· 7u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
46
+ 4u
45
+ ··· 4u + 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
47
+ 21u
46
+ ··· + 4u + 1
c
2
, c
7
u
47
+ u
46
+ ··· + 2u
2
1
c
3
, c
4
, c
9
u
47
u
46
+ ··· + 19u
2
4
c
5
, c
6
, c
10
c
11
, c
12
u
47
u
46
+ ··· + 2u 1
c
8
u
47
+ 3u
46
+ ··· + 4u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
47
+ 11y
46
+ ··· 24y 1
c
2
, c
7
y
47
21y
46
+ ··· + 4y 1
c
3
, c
4
, c
9
y
47
45y
46
+ ··· + 152y 16
c
5
, c
6
, c
10
c
11
, c
12
y
47
+ 59y
46
+ ··· + 4y 1
c
8
y
47
y
46
+ ··· + 48y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.413784 + 0.877713I
2.77094 10.32890I 4.55615 + 8.72539I
u = 0.413784 0.877713I
2.77094 + 10.32890I 4.55615 8.72539I
u = 0.195276 + 0.942019I
4.26421 + 6.13092I 0.95567 8.26497I
u = 0.195276 0.942019I
4.26421 6.13092I 0.95567 + 8.26497I
u = 0.413997 + 0.861943I
4.64721 + 5.04866I 7.42319 4.27573I
u = 0.413997 0.861943I
4.64721 5.04866I 7.42319 + 4.27573I
u = 0.088069 + 0.951448I
5.29996 0.71896I 4.01239 + 0.13887I
u = 0.088069 0.951448I
5.29996 + 0.71896I 4.01239 0.13887I
u = 0.371801 + 0.847703I
0.66504 3.24376I 1.24977 + 4.19607I
u = 0.371801 0.847703I
0.66504 + 3.24376I 1.24977 4.19607I
u = 0.418667 + 0.819399I
4.90772 + 2.01411I 7.94310 3.89227I
u = 0.418667 0.819399I
4.90772 2.01411I 7.94310 + 3.89227I
u = 0.422632 + 0.799038I
3.24960 + 3.24336I 5.51628 0.96386I
u = 0.422632 0.799038I
3.24960 3.24336I 5.51628 + 0.96386I
u = 0.166444 + 0.877591I
2.03526 1.97557I 2.70543 + 4.55475I
u = 0.166444 0.877591I
2.03526 + 1.97557I 2.70543 4.55475I
u = 0.173002 + 0.658242I
0.78945 1.82375I 5.03537 + 5.41712I
u = 0.173002 0.658242I
0.78945 + 1.82375I 5.03537 5.41712I
u = 0.632705 + 0.037024I
5.54952 6.80116I 9.39680 + 5.30944I
u = 0.632705 0.037024I
5.54952 + 6.80116I 9.39680 5.30944I
u = 0.631119 + 0.020188I
7.32256 + 1.52528I 12.11554 0.46181I
u = 0.631119 0.020188I
7.32256 1.52528I 12.11554 + 0.46181I
u = 0.585855
1.90017 6.44170
u = 0.263626 + 0.379028I
1.33756 1.71540I 3.14465 0.50606I
u = 0.263626 0.379028I
1.33756 + 1.71540I 3.14465 + 0.50606I
u = 0.408286 + 0.210597I
0.73079 + 4.11365I 6.43864 8.58454I
u = 0.408286 0.210597I
0.73079 4.11365I 6.43864 + 8.58454I
u = 0.368463 + 0.084232I
0.852973 0.196059I 12.38641 + 2.18387I
u = 0.368463 0.084232I
0.852973 + 0.196059I 12.38641 2.18387I
u = 0.01412 + 1.64039I
8.92297 2.26281I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.01412 1.64039I
8.92297 + 2.26281I 0
u = 0.10060 + 1.64581I
5.17503 + 1.32295I 0
u = 0.10060 1.64581I
5.17503 1.32295I 0
u = 0.10339 + 1.65410I
3.64160 + 3.95604I 0
u = 0.10339 1.65410I
3.64160 3.95604I 0
u = 0.09363 + 1.67036I
9.45217 4.99818I 0
u = 0.09363 1.67036I
9.45217 + 4.99818I 0
u = 0.10750 + 1.66999I
4.14651 + 7.03674I 0
u = 0.10750 1.66999I
4.14651 7.03674I 0
u = 0.10893 + 1.67541I
6.10861 12.33850I 0
u = 0.10893 1.67541I
6.10861 + 12.33850I 0
u = 0.03693 + 1.68229I
11.09350 2.72228I 0
u = 0.03693 1.68229I
11.09350 + 2.72228I 0
u = 0.04483 + 1.69525I
13.5927 + 7.0408I 0
u = 0.04483 1.69525I
13.5927 7.0408I 0
u = 0.02120 + 1.69620I
14.6803 0.2975I 0
u = 0.02120 1.69620I
14.6803 + 0.2975I 0
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
47
+ 21u
46
+ ··· + 4u + 1
c
2
, c
7
u
47
+ u
46
+ ··· + 2u
2
1
c
3
, c
4
, c
9
u
47
u
46
+ ··· + 19u
2
4
c
5
, c
6
, c
10
c
11
, c
12
u
47
u
46
+ ··· + 2u 1
c
8
u
47
+ 3u
46
+ ··· + 4u + 1
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
47
+ 11y
46
+ ··· 24y 1
c
2
, c
7
y
47
21y
46
+ ··· + 4y 1
c
3
, c
4
, c
9
y
47
45y
46
+ ··· + 152y 16
c
5
, c
6
, c
10
c
11
, c
12
y
47
+ 59y
46
+ ··· + 4y 1
c
8
y
47
y
46
+ ··· + 48y 1
8