12a
0737
(K12a
0737
)
A knot diagram
1
Linearized knot diagam
3 8 9 11 12 10 2 1 6 7 5 4
Solving Sequence
5,12 6,9
10 7 11 4 1 3 8 2
c
5
c
9
c
6
c
11
c
4
c
12
c
3
c
8
c
2
c
1
, c
7
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
34
u
33
+ ··· + 8b 7u, u
34
+ u
33
+ ··· + 8a + 23u, u
35
u
34
+ ··· + 5u
2
1i
I
u
2
= h3u
13
u
12
22u
11
+ 11u
10
+ 49u
9
17u
8
35u
7
15u
6
4u
5
+ 45u
4
+ 8u
3
16u
2
+ 11b 2u 9,
5u
13
+ 2u
12
22u
11
11u
10
+ 34u
9
+ 23u
8
7u
7
25u
6
36u
5
+ 20u
4
+ 39u
3
u
2
+ 11a 7u 15,
u
14
5u
12
+ 9u
10
+ u
9
5u
8
4u
7
3u
6
+ 6u
5
+ 4u
4
2u
3
2u 1i
I
u
3
= h48312506401u
39
25481530594u
38
+ ··· + 43198696939b 277160237401,
199007192694u
39
+ 322170993904u
38
+ ··· + 215993484695a + 1742428011421,
u
40
u
39
+ ··· + 6u + 5i
I
u
4
= hb + a 1, a
4
+ 2a
2
+ 2, u + 1i
I
u
5
= hb + a + 1, a
3
, u 1i
* 5 irreducible components of dim
C
= 0, with total 96 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
hu
34
u
33
+· · ·+8b 7u, u
34
+u
33
+· · ·+8a + 23u, u
35
u
34
+· · ·+5u
2
1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
6
=
1
u
2
a
9
=
1
8
u
34
1
8
u
33
+ ···
5
2
u
3
23
8
u
1
8
u
34
+
1
8
u
33
+ ··· +
7
2
u
3
+
7
8
u
a
10
=
1
8
u
34
1
8
u
33
+ ···
5
2
u
3
15
8
u
1
8
u
34
+
1
8
u
33
+ ··· +
5
2
u
3
+
7
8
u
a
7
=
1
8
u
33
+
1
8
u
32
+ ··· +
5
2
u
2
+
7
8
1
8
u
33
1
8
u
32
+ ···
5
2
u
2
+
1
8
a
11
=
u
u
a
4
=
u
2
+ 1
u
2
a
1
=
u
5
2u
3
+ u
u
5
+ u
3
+ u
a
3
=
1
8
u
34
1
4
u
33
+ ···
1
8
u +
7
8
1
8
u
34
+
3
8
u
33
+ ··· +
1
8
u +
1
4
a
8
=
1
8
u
34
1
8
u
33
+ ···
13
2
u
3
23
8
u
u
13
5u
11
+ 7u
9
+ 2u
7
8u
5
u
3
+ u
a
2
=
1
8
u
34
u
33
+ ··· +
13
8
u
7
8
1
4
u
34
+
7
8
u
33
+ ···
13
4
u
2
+
7
8
(ii) Obstruction class = 1
(iii) Cusp Shapes =
3
4
u
34
+
1
4
u
33
+ ··· +
49
4
u +
15
2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
35
+ 17u
34
+ ··· + 4u + 4
c
2
, c
7
u
35
+ 3u
34
+ ··· + 6u + 2
c
3
u
35
3u
34
+ ··· + 72u + 296
c
4
, c
5
, c
6
c
9
, c
10
, c
11
u
35
u
34
+ ··· + 5u
2
1
c
8
u
35
+ 9u
34
+ ··· 70u 46
c
12
u
35
+ 3u
34
+ ··· + 256u + 256
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
35
+ 3y
34
+ ··· 240y 16
c
2
, c
7
y
35
17y
34
+ ··· + 4y 4
c
3
y
35
y
34
+ ··· + 704928y 87616
c
4
, c
5
, c
6
c
9
, c
10
, c
11
y
35
37y
34
+ ··· + 10y 1
c
8
y
35
+ 11y
34
+ ··· + 28820y 2116
c
12
y
35
+ 7y
34
+ ··· + 1441792y 65536
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.167828 + 0.756763I
a = 0.22251 1.74569I
b = 0.396759 0.137285I
4.21898 7.81840I 0.96471 + 7.49925I
u = 0.167828 0.756763I
a = 0.22251 + 1.74569I
b = 0.396759 + 0.137285I
4.21898 + 7.81840I 0.96471 7.49925I
u = 0.086793 + 0.752466I
a = 0.11704 1.72052I
b = 0.203323 0.193454I
5.93777 0.09592I 2.21151 + 0.44008I
u = 0.086793 0.752466I
a = 0.11704 + 1.72052I
b = 0.203323 + 0.193454I
5.93777 + 0.09592I 2.21151 0.44008I
u = 0.152216 + 0.717373I
a = 0.21415 1.68842I
b = 0.321763 0.065640I
1.80618 + 3.02164I 3.90973 3.95401I
u = 0.152216 0.717373I
a = 0.21415 + 1.68842I
b = 0.321763 + 0.065640I
1.80618 3.02164I 3.90973 + 3.95401I
u = 1.300490 + 0.187880I
a = 1.52389 1.71909I
b = 2.06311 + 2.28997I
2.41004 + 1.41249I 9.47570 + 0.I
u = 1.300490 0.187880I
a = 1.52389 + 1.71909I
b = 2.06311 2.28997I
2.41004 1.41249I 9.47570 + 0.I
u = 1.311970 + 0.248425I
a = 1.07722 1.85643I
b = 1.68583 + 2.62705I
1.60231 6.99533I 7.54634 + 6.51965I
u = 1.311970 0.248425I
a = 1.07722 + 1.85643I
b = 1.68583 2.62705I
1.60231 + 6.99533I 7.54634 6.51965I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.331990 + 0.208218I
a = 1.25521 1.60201I
b = 1.72921 + 2.28481I
5.46888 + 3.18024I 12.51891 3.03421I
u = 1.331990 0.208218I
a = 1.25521 + 1.60201I
b = 1.72921 2.28481I
5.46888 3.18024I 12.51891 + 3.03421I
u = 0.161198 + 0.551221I
a = 0.29100 1.43200I
b = 0.174142 + 0.205041I
0.34475 + 1.77362I 4.56578 5.89788I
u = 0.161198 0.551221I
a = 0.29100 + 1.43200I
b = 0.174142 0.205041I
0.34475 1.77362I 4.56578 + 5.89788I
u = 1.38810 + 0.33957I
a = 0.48176 1.67486I
b = 1.06352 + 2.91942I
3.48171 + 8.10374I 6.00000 4.49399I
u = 1.38810 0.33957I
a = 0.48176 + 1.67486I
b = 1.06352 2.91942I
3.48171 8.10374I 6.00000 + 4.49399I
u = 1.43331
a = 1.28549
b = 1.20757
8.30021 10.1560
u = 1.43493 + 0.26536I
a = 0.64645 1.33183I
b = 0.86486 + 2.42158I
9.31625 + 3.51006I 13.29415 + 0.I
u = 1.43493 0.26536I
a = 0.64645 + 1.33183I
b = 0.86486 2.42158I
9.31625 3.51006I 13.29415 + 0.I
u = 1.41859 + 0.34725I
a = 0.40165 1.57935I
b = 0.89723 + 2.93938I
8.28583 11.00080I 12.8696 + 5.9885I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.41859 0.34725I
a = 0.40165 + 1.57935I
b = 0.89723 2.93938I
8.28583 + 11.00080I 12.8696 5.9885I
u = 1.41768 + 0.36311I
a = 0.35041 1.60931I
b = 0.89725 + 3.02458I
5.9000 + 16.1532I 9.74356 9.72712I
u = 1.41768 0.36311I
a = 0.35041 + 1.60931I
b = 0.89725 3.02458I
5.9000 16.1532I 9.74356 + 9.72712I
u = 1.43323 + 0.29831I
a = 0.53750 1.42612I
b = 0.84249 + 2.64127I
10.04470 8.52981I 14.2743 + 6.4652I
u = 1.43323 0.29831I
a = 0.53750 + 1.42612I
b = 0.84249 2.64127I
10.04470 + 8.52981I 14.2743 6.4652I
u = 0.314010 + 0.390794I
a = 0.71540 1.22571I
b = 0.025527 + 0.500038I
1.48480 + 2.02330I 2.63866 + 1.25082I
u = 0.314010 0.390794I
a = 0.71540 + 1.22571I
b = 0.025527 0.500038I
1.48480 2.02330I 2.63866 1.25082I
u = 1.50324 + 0.03422I
a = 0.874162 0.174169I
b = 0.489019 + 0.337659I
13.70520 1.40021I 16.4192 + 0.I
u = 1.50324 0.03422I
a = 0.874162 + 0.174169I
b = 0.489019 0.337659I
13.70520 + 1.40021I 16.4192 + 0.I
u = 0.450369 + 0.202730I
a = 1.37562 0.88797I
b = 0.510703 + 0.597542I
1.04042 4.50619I 4.53729 + 8.22316I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.450369 0.202730I
a = 1.37562 + 0.88797I
b = 0.510703 0.597542I
1.04042 + 4.50619I 4.53729 8.22316I
u = 1.50640 + 0.06553I
a = 0.834503 0.327285I
b = 0.448322 + 0.642057I
12.03530 + 6.55130I 13.7606 5.2864I
u = 1.50640 0.06553I
a = 0.834503 + 0.327285I
b = 0.448322 0.642057I
12.03530 6.55130I 13.7606 + 5.2864I
u = 0.377334 + 0.098062I
a = 1.222090 0.396295I
b = 0.510257 + 0.241115I
0.940032 + 0.385042I 10.54272 2.65749I
u = 0.377334 0.098062I
a = 1.222090 + 0.396295I
b = 0.510257 0.241115I
0.940032 0.385042I 10.54272 + 2.65749I
8
II. I
u
2
=
h3u
13
u
12
+· · ·+11b9, 5u
13
+2u
12
+· · ·+11a15, u
14
5u
12
+· · ·2u1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
6
=
1
u
2
a
9
=
0.454545u
13
0.181818u
12
+ ··· + 0.636364u + 1.36364
0.272727u
13
+ 0.0909091u
12
+ ··· + 0.181818u + 0.818182
a
10
=
u
13
+ 5u
11
9u
9
u
8
+ 5u
7
+ 4u
6
+ 3u
5
6u
4
4u
3
+ 2u
2
+ 2
0.545455u
13
+ 0.181818u
12
+ ··· + 0.363636u + 0.636364
a
7
=
0.636364u
13
0.545455u
12
+ ··· + 1.90909u 0.909091
1
a
11
=
u
u
a
4
=
u
2
+ 1
u
2
a
1
=
u
5
2u
3
+ u
u
5
+ u
3
+ u
a
3
=
0.818182u
13
+ 0.272727u
12
+ ··· + 0.545455u + 1.45455
u
8
2u
6
+ u
3
+ 2u
2
u
a
8
=
0.454545u
13
0.181818u
12
+ ··· + 0.636364u + 1.36364
0.272727u
13
+ 0.0909091u
12
+ ··· + 0.181818u + 0.818182
a
2
=
0.727273u
13
0.0909091u
12
+ ··· + 2.81818u + 1.18182
0.0909091u
13
0.363636u
12
+ ··· + 0.272727u 0.272727
(ii) Obstruction class = 1
(iii) Cusp Shapes =
16
11
u
13
20
11
u
12
4u
11
+ 4u
10
+
12
11
u
9
+
56
11
u
8
+
48
11
u
7
212
11
u
6
36
11
u
5
+
108
11
u
4
+
28
11
u
3
+
76
11
u
2
40
11
u +
18
11
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
7
+ 4u
6
+ 8u
5
+ 8u
4
+ 4u
3
+ u
2
+ 2u + 1)
2
c
2
, c
7
(u
7
2u
5
+ 2u
3
+ u
2
1)
2
c
3
(u
7
+ 5u
6
+ 12u
5
+ 17u
4
+ 15u
3
+ 5u
2
4u 4)
2
c
4
, c
5
, c
6
c
9
, c
10
, c
11
u
14
5u
12
+ 9u
10
+ u
9
5u
8
4u
7
3u
6
+ 6u
5
+ 4u
4
2u
3
2u 1
c
8
(u
7
+ 2u
5
+ 2u
4
+ 4u
3
+ u
2
+ 2u 1)
2
c
12
(u
7
+ 2u
5
2u
4
+ 4u
3
u
2
+ 2u + 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
7
+ 8y
5
4y
4
+ 24y
3
y
2
+ 2y 1)
2
c
2
, c
7
(y
7
4y
6
+ 8y
5
8y
4
+ 4y
3
y
2
+ 2y 1)
2
c
3
(y
7
y
6
+ 4y
5
+ 13y
4
y
3
9y
2
+ 56y 16)
2
c
4
, c
5
, c
6
c
9
, c
10
, c
11
y
14
10y
13
+ ··· 4y + 1
c
8
, c
12
(y
7
+ 4y
6
+ 12y
5
+ 16y
4
+ 20y
3
+ 19y
2
+ 6y 1)
2
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.957061 + 0.519308I
a = 0.514399 + 0.255510I
b = 1.40007 0.49397I
5.11553 1.84683I 13.12815 + 1.09324I
u = 0.957061 0.519308I
a = 0.514399 0.255510I
b = 1.40007 + 0.49397I
5.11553 + 1.84683I 13.12815 1.09324I
u = 0.239949 + 0.878713I
a = 1.07659 + 1.37148I
b = 0.018151 + 0.213597I
0.63279 11.68630I 6.29693 + 8.84509I
u = 0.239949 0.878713I
a = 1.07659 1.37148I
b = 0.018151 0.213597I
0.63279 + 11.68630I 6.29693 8.84509I
u = 1.14029
a = 0.464314
b = 0.191074
2.04041 4.35900
u = 1.168590 + 0.306255I
a = 0.757257 + 0.859295I
b = 1.53466 1.20028I
2.65620 3.76357I 1.39540 + 4.24459I
u = 1.168590 0.306255I
a = 0.757257 0.859295I
b = 1.53466 + 1.20028I
2.65620 + 3.76357I 1.39540 4.24459I
u = 1.321610 + 0.182486I
a = 0.214561 0.416784I
b = 1.52571 + 1.12991I
5.11553 1.84683I 13.12815 + 1.09324I
u = 1.321610 0.182486I
a = 0.214561 + 0.416784I
b = 1.52571 1.12991I
5.11553 + 1.84683I 13.12815 1.09324I
u = 0.043481 + 0.649444I
a = 1.06596 + 1.83916I
b = 0.617135 + 0.405783I
2.65620 + 3.76357I 1.39540 4.24459I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.043481 0.649444I
a = 1.06596 1.83916I
b = 0.617135 0.405783I
2.65620 3.76357I 1.39540 + 4.24459I
u = 1.365780 + 0.312423I
a = 0.455826 + 1.037870I
b = 1.45156 2.32441I
0.63279 + 11.68630I 6.29693 8.84509I
u = 1.365780 0.312423I
a = 0.455826 1.037870I
b = 1.45156 + 2.32441I
0.63279 11.68630I 6.29693 + 8.84509I
u = 0.412656
a = 1.28304
b = 0.921809
2.04041 4.35900
13
III.
I
u
3
= h4.83×10
10
u
39
2.55×10
10
u
38
+· · ·+4.32×10
10
b2.77×10
11
, 1.99×
10
11
u
39
+3.22×10
11
u
38
+· · ·+2.16×10
11
a+1.74×10
12
, u
40
u
39
+· · ·+6u+5i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
u
a
6
=
1
u
2
a
9
=
0.921357u
39
1.49158u
38
+ ··· + 14.4435u 8.06704
1.11838u
39
+ 0.589868u
38
+ ··· 8.45803u + 6.41594
a
10
=
1
5
u
39
1
5
u
38
+ ··· +
24
5
u +
6
5
0.721357u
39
+ 1.29158u
38
+ ··· 8.64350u + 9.26704
a
7
=
1.85341u
39
+ 1.13205u
38
+ ··· 56.5699u 19.7639
1
a
11
=
u
u
a
4
=
u
2
+ 1
u
2
a
1
=
u
5
2u
3
+ u
u
5
+ u
3
+ u
a
3
=
0.141219u
39
+ 0.286734u
38
+ ··· + 12.4150u + 9.11906
0.874874u
39
1.11047u
38
+ ··· + 30.2577u + 9.75078
a
8
=
0.125054u
39
0.909866u
38
+ ··· + 16.1112u + 2.54657
0.585648u
39
+ 1.51958u
38
+ ··· 12.9285u + 8.73631
a
2
=
1.29679u
39
0.118839u
38
+ ··· + 35.8131u + 24.9355
4.70549u
39
0.173819u
38
+ ··· 4.96586u 15.7106
(ii) Obstruction class = 1
(iii) Cusp Shapes
=
241664643308
43198696939
u
39
+
123235657656
43198696939
u
38
+ ···
438305923412
43198696939
u +
1059211366526
43198696939
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
20
+ 9u
19
+ ··· + 2u
2
+ 1)
2
c
2
, c
7
(u
20
u
19
+ ··· 2u + 1)
2
c
3
(u
10
2u
9
+ u
8
+ 4u
6
6u
5
+ u
4
+ 6u
3
5u
2
+ 1)
4
c
4
, c
5
, c
6
c
9
, c
10
, c
11
u
40
u
39
+ ··· + 6u + 5
c
8
(u
20
3u
19
+ ··· 16u + 5)
2
c
12
(u
20
+ 3u
19
+ ··· + 16u + 5)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
20
+ 3y
19
+ ··· + 4y + 1)
2
c
2
, c
7
(y
20
9y
19
+ ··· + 2y
2
+ 1)
2
c
3
(y
10
2y
9
+ ··· 10y + 1)
4
c
4
, c
5
, c
6
c
9
, c
10
, c
11
y
40
31y
39
+ ··· + 204y + 25
c
8
, c
12
(y
20
+ 3y
19
+ ··· + 204y + 25)
2
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.805245 + 0.548498I
a = 0.484950 + 0.496101I
b = 1.063550 0.519102I
5.84675 14.3672 + 0.I
u = 0.805245 0.548498I
a = 0.484950 0.496101I
b = 1.063550 + 0.519102I
5.84675 14.3672 + 0.I
u = 0.729774 + 0.602283I
a = 0.541328 + 0.641388I
b = 0.884543 0.553467I
4.40946 4.65452I 11.20346 + 6.04247I
u = 0.729774 0.602283I
a = 0.541328 0.641388I
b = 0.884543 + 0.553467I
4.40946 + 4.65452I 11.20346 6.04247I
u = 1.066160 + 0.285066I
a = 0.937984 + 0.759238I
b = 1.51409 0.75635I
1.54326 + 3.92983I 2.95600 3.21471I
u = 1.066160 0.285066I
a = 0.937984 0.759238I
b = 1.51409 + 0.75635I
1.54326 3.92983I 2.95600 + 3.21471I
u = 0.254311 + 0.850232I
a = 1.03350 + 1.37276I
b = 0.082493 + 0.163450I
2.96491 + 6.68616I 9.50669 5.21994I
u = 0.254311 0.850232I
a = 1.03350 1.37276I
b = 0.082493 0.163450I
2.96491 6.68616I 9.50669 + 5.21994I
u = 1.041820 + 0.410831I
a = 0.406675 + 0.084930I
b = 1.53742 0.18333I
1.016470 0.519983I 6.28339 + 0.77505I
u = 1.041820 0.410831I
a = 0.406675 0.084930I
b = 1.53742 + 0.18333I
1.016470 + 0.519983I 6.28339 0.77505I
17
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.006990 + 0.539596I
a = 0.566442 + 0.194865I
b = 1.53566 0.53787I
2.96491 + 6.68616I 9.50669 5.21994I
u = 1.006990 0.539596I
a = 0.566442 0.194865I
b = 1.53566 + 0.53787I
2.96491 6.68616I 9.50669 + 5.21994I
u = 1.120430 + 0.232272I
a = 0.796352 + 0.683257I
b = 1.25298 0.91224I
1.016470 + 0.519983I 6.28339 0.77505I
u = 1.120430 0.232272I
a = 0.796352 0.683257I
b = 1.25298 + 0.91224I
1.016470 0.519983I 6.28339 + 0.77505I
u = 0.331708 + 0.777509I
a = 0.88385 + 1.31325I
b = 0.233626 0.031651I
4.40946 + 4.65452I 11.20346 6.04247I
u = 0.331708 0.777509I
a = 0.88385 1.31325I
b = 0.233626 + 0.031651I
4.40946 4.65452I 11.20346 + 6.04247I
u = 0.196460 + 0.818278I
a = 1.03861 + 1.46561I
b = 0.189464 + 0.280707I
1.54326 3.92983I 2.95600 + 3.21471I
u = 0.196460 0.818278I
a = 1.03861 1.46561I
b = 0.189464 0.280707I
1.54326 + 3.92983I 2.95600 3.21471I
u = 0.399715 + 0.718129I
a = 0.74940 + 1.23357I
b = 0.366223 0.161582I
3.48717 9.73375 + 0.I
u = 0.399715 0.718129I
a = 0.74940 1.23357I
b = 0.366223 + 0.161582I
3.48717 9.73375 + 0.I
18
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.237360 + 0.242641I
a = 0.263575 0.258220I
b = 1.58490 + 0.63271I
1.016470 0.519983I 6.00000 + 0.77505I
u = 1.237360 0.242641I
a = 0.263575 + 0.258220I
b = 1.58490 0.63271I
1.016470 + 0.519983I 6.00000 0.77505I
u = 1.333230 + 0.081709I
a = 0.057993 0.502701I
b = 1.01747 + 1.42606I
5.84675 14.3672 + 0.I
u = 1.333230 0.081709I
a = 0.057993 + 0.502701I
b = 1.01747 1.42606I
5.84675 14.3672 + 0.I
u = 1.341140 + 0.170431I
a = 0.334067 + 0.811377I
b = 0.56237 2.00124I
3.48717 6.00000 + 0.I
u = 1.341140 0.170431I
a = 0.334067 0.811377I
b = 0.56237 + 2.00124I
3.48717 6.00000 + 0.I
u = 1.316030 + 0.310134I
a = 0.523422 + 0.987925I
b = 1.46616 2.00702I
1.54326 + 3.92983I 0
u = 1.316030 0.310134I
a = 0.523422 0.987925I
b = 1.46616 + 2.00702I
1.54326 3.92983I 0
u = 1.337970 + 0.218560I
a = 0.279010 0.420680I
b = 1.73917 + 1.10941I
2.96491 + 6.68616I 0
u = 1.337970 0.218560I
a = 0.279010 + 0.420680I
b = 1.73917 1.10941I
2.96491 6.68616I 0
19
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 1.356430 + 0.031317I
a = 0.007062 0.585271I
b = 0.76651 + 1.67915I
4.40946 4.65452I 11.20346 + 6.04247I
u = 1.356430 0.031317I
a = 0.007062 + 0.585271I
b = 0.76651 1.67915I
4.40946 + 4.65452I 11.20346 6.04247I
u = 1.348070 + 0.225139I
a = 0.389964 + 0.898034I
b = 0.90232 2.12727I
4.40946 4.65452I 0
u = 1.348070 0.225139I
a = 0.389964 0.898034I
b = 0.90232 + 2.12727I
4.40946 + 4.65452I 0
u = 1.356410 + 0.293193I
a = 0.450021 + 1.002480I
b = 1.33232 2.25052I
2.96491 6.68616I 0
u = 1.356410 0.293193I
a = 0.450021 1.002480I
b = 1.33232 + 2.25052I
2.96491 + 6.68616I 0
u = 0.062616 + 0.525185I
a = 1.28999 + 2.16247I
b = 0.857635 + 0.387749I
1.54326 3.92983I 2.95600 + 3.21471I
u = 0.062616 0.525185I
a = 1.28999 2.16247I
b = 0.857635 0.387749I
1.54326 + 3.92983I 2.95600 3.21471I
u = 0.059388 + 0.505857I
a = 0.89150 + 2.18224I
b = 0.764328 + 0.264884I
1.016470 0.519983I 6.28339 + 0.77505I
u = 0.059388 0.505857I
a = 0.89150 2.18224I
b = 0.764328 0.264884I
1.016470 + 0.519983I 6.28339 0.77505I
20
IV. I
u
4
= hb + a 1, a
4
+ 2a
2
+ 2, u + 1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
1
a
6
=
1
1
a
9
=
a
a + 1
a
10
=
a + 1
a
a
7
=
a
a 1
a
11
=
1
1
a
4
=
0
1
a
1
=
0
1
a
3
=
a
2
a
2
a + 1
a
8
=
a
1
a
2
=
2a
2
2
a
3
+ a
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
2
+ 4
21
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
2u + 2)
2
c
2
, c
7
u
4
2u
2
+ 2
c
3
, c
8
u
4
+ 2u
2
+ 2
c
4
, c
5
, c
9
c
10
(u + 1)
4
c
6
, c
11
(u 1)
4
c
12
u
4
22
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ 4)
2
c
2
, c
7
(y
2
2y + 2)
2
c
3
, c
8
(y
2
+ 2y + 2)
2
c
4
, c
5
, c
6
c
9
, c
10
, c
11
(y 1)
4
c
12
y
4
23
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0.455090 + 1.098680I
b = 0.544910 1.098680I
0.82247 + 3.66386I 8.00000 4.00000I
u = 1.00000
a = 0.455090 1.098680I
b = 0.544910 + 1.098680I
0.82247 3.66386I 8.00000 + 4.00000I
u = 1.00000
a = 0.455090 + 1.098680I
b = 1.45509 1.09868I
0.82247 3.66386I 8.00000 + 4.00000I
u = 1.00000
a = 0.455090 1.098680I
b = 1.45509 + 1.09868I
0.82247 + 3.66386I 8.00000 4.00000I
24
V. I
u
5
= hb + a + 1, a
3
, u 1i
(i) Arc colorings
a
5
=
1
0
a
12
=
0
1
a
6
=
1
1
a
9
=
a
a 1
a
10
=
a 1
a
a
7
=
a
a 1
a
11
=
1
1
a
4
=
0
1
a
1
=
0
1
a
3
=
a
2
a
2
+ a + 1
a
8
=
a
1
a
2
=
0
a
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
2
+ 12
25
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
12
u
3
c
4
, c
5
, c
9
c
10
(u 1)
3
c
6
, c
11
(u + 1)
3
26
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
12
y
3
c
4
, c
5
, c
6
c
9
, c
10
, c
11
(y 1)
3
27
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
u = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
28
VI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
3
(u
2
2u + 2)
2
(u
7
+ 4u
6
+ 8u
5
+ 8u
4
+ 4u
3
+ u
2
+ 2u + 1)
2
· ((u
20
+ 9u
19
+ ··· + 2u
2
+ 1)
2
)(u
35
+ 17u
34
+ ··· + 4u + 4)
c
2
, c
7
u
3
(u
4
2u
2
+ 2)(u
7
2u
5
+ ··· + u
2
1)
2
(u
20
u
19
+ ··· 2u + 1)
2
· (u
35
+ 3u
34
+ ··· + 6u + 2)
c
3
u
3
(u
4
+ 2u
2
+ 2)(u
7
+ 5u
6
+ 12u
5
+ 17u
4
+ 15u
3
+ 5u
2
4u 4)
2
· (u
10
2u
9
+ u
8
+ 4u
6
6u
5
+ u
4
+ 6u
3
5u
2
+ 1)
4
· (u
35
3u
34
+ ··· + 72u + 296)
c
4
, c
5
, c
9
c
10
(u 1)
3
(u + 1)
4
· (u
14
5u
12
+ 9u
10
+ u
9
5u
8
4u
7
3u
6
+ 6u
5
+ 4u
4
2u
3
2u 1)
· (u
35
u
34
+ ··· + 5u
2
1)(u
40
u
39
+ ··· + 6u + 5)
c
6
, c
11
(u 1)
4
(u + 1)
3
· (u
14
5u
12
+ 9u
10
+ u
9
5u
8
4u
7
3u
6
+ 6u
5
+ 4u
4
2u
3
2u 1)
· (u
35
u
34
+ ··· + 5u
2
1)(u
40
u
39
+ ··· + 6u + 5)
c
8
u
3
(u
4
+ 2u
2
+ 2)(u
7
+ 2u
5
+ 2u
4
+ 4u
3
+ u
2
+ 2u 1)
2
· ((u
20
3u
19
+ ··· 16u + 5)
2
)(u
35
+ 9u
34
+ ··· 70u 46)
c
12
u
7
(u
7
+ 2u
5
+ ··· + 2u + 1)
2
(u
20
+ 3u
19
+ ··· + 16u + 5)
2
· (u
35
+ 3u
34
+ ··· + 256u + 256)
29
VII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
3
(y
2
+ 4)
2
(y
7
+ 8y
5
4y
4
+ 24y
3
y
2
+ 2y 1)
2
· ((y
20
+ 3y
19
+ ··· + 4y + 1)
2
)(y
35
+ 3y
34
+ ··· 240y 16)
c
2
, c
7
y
3
(y
2
2y + 2)
2
(y
7
4y
6
+ 8y
5
8y
4
+ 4y
3
y
2
+ 2y 1)
2
· ((y
20
9y
19
+ ··· + 2y
2
+ 1)
2
)(y
35
17y
34
+ ··· + 4y 4)
c
3
y
3
(y
2
+ 2y + 2)
2
(y
7
y
6
+ 4y
5
+ 13y
4
y
3
9y
2
+ 56y 16)
2
· ((y
10
2y
9
+ ··· 10y + 1)
4
)(y
35
y
34
+ ··· + 704928y 87616)
c
4
, c
5
, c
6
c
9
, c
10
, c
11
((y 1)
7
)(y
14
10y
13
+ ··· 4y + 1)(y
35
37y
34
+ ··· + 10y 1)
· (y
40
31y
39
+ ··· + 204y + 25)
c
8
y
3
(y
2
+ 2y + 2)
2
(y
7
+ 4y
6
+ 12y
5
+ 16y
4
+ 20y
3
+ 19y
2
+ 6y 1)
2
· ((y
20
+ 3y
19
+ ··· + 204y + 25)
2
)(y
35
+ 11y
34
+ ··· + 28820y 2116)
c
12
y
7
(y
7
+ 4y
6
+ 12y
5
+ 16y
4
+ 20y
3
+ 19y
2
+ 6y 1)
2
· (y
20
+ 3y
19
+ ··· + 204y + 25)
2
· (y
35
+ 7y
34
+ ··· + 1441792y 65536)
30