12a
0738
(K12a
0738
)
A knot diagram
1
Linearized knot diagam
3 8 9 11 12 10 2 1 7 6 5 4
Solving Sequence
6,12
5 11 4 1 10 7 9 3 8 2
c
5
c
11
c
4
c
12
c
10
c
6
c
9
c
3
c
8
c
2
c
1
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
59
u
58
+ ··· + u
2
1i
* 1 irreducible components of dim
C
= 0, with total 59 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
59
u
58
+ · · · + u
2
1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
10
=
u
3
2u
u
3
+ u
a
7
=
u
6
3u
4
+ 2u
2
+ 1
u
6
+ 2u
4
u
2
a
9
=
u
9
4u
7
+ 5u
5
3u
u
9
+ 3u
7
3u
5
+ u
a
3
=
u
22
9u
20
+ ··· 4u
2
+ 1
u
22
+ 8u
20
+ ··· + 4u
4
+ 3u
2
a
8
=
u
21
8u
19
+ ··· 4u
3
3u
u
23
9u
21
+ ··· 4u
3
+ u
a
2
=
u
51
+ 20u
49
+ ··· + 20u
5
+ 7u
3
u
51
19u
49
+ ··· u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
56
+ 84u
54
+ ··· + 8u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
59
+ 29u
58
+ ··· + 2u + 1
c
2
, c
7
u
59
+ u
58
+ ··· + u
2
1
c
3
u
59
u
58
+ ··· 214u 61
c
4
, c
5
, c
11
u
59
u
58
+ ··· + u
2
1
c
6
, c
9
, c
10
c
12
u
59
+ 3u
58
+ ··· + 26u + 5
c
8
u
59
+ 3u
58
+ ··· + 274u 187
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
59
+ 3y
58
+ ··· 18y 1
c
2
, c
7
y
59
29y
58
+ ··· + 2y 1
c
3
y
59
+ 11y
58
+ ··· + 17370y 3721
c
4
, c
5
, c
11
y
59
45y
58
+ ··· + 2y 1
c
6
, c
9
, c
10
c
12
y
59
+ 71y
58
+ ··· 54y 25
c
8
y
59
+ 23y
58
+ ··· 139226y 34969
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.049650 + 0.244074I
1.46822 + 3.88519I 2.11458 3.15684I
u = 1.049650 0.244074I
1.46822 3.88519I 2.11458 + 3.15684I
u = 0.015995 + 0.915634I
14.7136 0.7721I 3.56410 0.31715I
u = 0.015995 0.915634I
14.7136 + 0.7721I 3.56410 + 0.31715I
u = 0.029257 + 0.912896I
12.9183 9.0890I 1.27230 + 5.79658I
u = 0.029257 0.912896I
12.9183 + 9.0890I 1.27230 5.79658I
u = 0.024127 + 0.908325I
10.26760 + 4.09935I 1.75919 2.25179I
u = 0.024127 0.908325I
10.26760 4.09935I 1.75919 + 2.25179I
u = 0.008156 + 0.888471I
7.74257 + 2.40406I 2.67885 3.26207I
u = 0.008156 0.888471I
7.74257 2.40406I 2.67885 + 3.26207I
u = 1.096820 + 0.205121I
1.080150 + 0.480738I 6.00000 + 0.I
u = 1.096820 0.205121I
1.080150 0.480738I 6.00000 + 0.I
u = 1.128910 + 0.272160I
2.42286 3.69043I 0
u = 1.128910 0.272160I
2.42286 + 3.69043I 0
u = 1.16156
2.06866 6.00000
u = 1.269780 + 0.147882I
2.98114 0.20812I 0
u = 1.269780 0.147882I
2.98114 + 0.20812I 0
u = 1.256570 + 0.266869I
1.39782 + 3.10898I 0
u = 1.256570 0.266869I
1.39782 3.10898I 0
u = 1.272580 + 0.192297I
3.97948 4.12493I 0
u = 1.272580 0.192297I
3.97948 + 4.12493I 0
u = 1.292070 + 0.025357I
5.86156 0.82447I 0
u = 1.292070 0.025357I
5.86156 + 0.82447I 0
u = 1.303410 + 0.050369I
4.08832 + 5.40748I 0
u = 1.303410 0.050369I
4.08832 5.40748I 0
u = 1.284990 + 0.240189I
2.75808 5.72388I 0
u = 1.284990 0.240189I
2.75808 + 5.72388I 0
u = 1.296950 + 0.252884I
0.47013 + 10.52840I 0
u = 1.296950 0.252884I
0.47013 10.52840I 0
u = 0.154537 + 0.652088I
4.02672 7.30062I 0.57198 + 8.02266I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.154537 0.652088I
4.02672 + 7.30062I 0.57198 8.02266I
u = 0.082927 + 0.664867I
5.50022 + 0.23449I 3.62552 + 0.57133I
u = 0.082927 0.664867I
5.50022 0.23449I 3.62552 0.57133I
u = 1.261370 + 0.449534I
9.10474 + 4.22835I 0
u = 1.261370 0.449534I
9.10474 4.22835I 0
u = 1.264440 + 0.443767I
6.42613 + 0.72715I 0
u = 1.264440 0.443767I
6.42613 0.72715I 0
u = 1.273510 + 0.421789I
3.81526 + 2.28316I 0
u = 1.273510 0.421789I
3.81526 2.28316I 0
u = 1.273610 + 0.447529I
10.81480 4.09220I 0
u = 1.273610 0.447529I
10.81480 + 4.09220I 0
u = 1.286810 + 0.419585I
3.71576 7.08524I 0
u = 1.286810 0.419585I
3.71576 + 7.08524I 0
u = 0.135360 + 0.620016I
1.62134 + 2.64544I 2.55643 4.49292I
u = 0.135360 0.620016I
1.62134 2.64544I 2.55643 + 4.49292I
u = 1.298440 + 0.437752I
10.62320 + 5.60619I 0
u = 1.298440 0.437752I
10.62320 5.60619I 0
u = 1.302440 + 0.430305I
6.13573 8.88432I 0
u = 1.302440 0.430305I
6.13573 + 8.88432I 0
u = 1.307160 + 0.432172I
8.7535 + 13.8960I 0
u = 1.307160 0.432172I
8.7535 13.8960I 0
u = 0.143619 + 0.486456I
0.31966 + 1.64759I 3.71266 6.34085I
u = 0.143619 0.486456I
0.31966 1.64759I 3.71266 + 6.34085I
u = 0.436286 + 0.252853I
1.03116 4.55655I 4.61891 + 7.76047I
u = 0.436286 0.252853I
1.03116 + 4.55655I 4.61891 7.76047I
u = 0.280522 + 0.375413I
1.54969 + 2.03091I 2.13878 + 1.09449I
u = 0.280522 0.375413I
1.54969 2.03091I 2.13878 1.09449I
u = 0.392822 + 0.121836I
0.952284 + 0.399884I 10.51926 2.51736I
u = 0.392822 0.121836I
0.952284 0.399884I 10.51926 + 2.51736I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
59
+ 29u
58
+ ··· + 2u + 1
c
2
, c
7
u
59
+ u
58
+ ··· + u
2
1
c
3
u
59
u
58
+ ··· 214u 61
c
4
, c
5
, c
11
u
59
u
58
+ ··· + u
2
1
c
6
, c
9
, c
10
c
12
u
59
+ 3u
58
+ ··· + 26u + 5
c
8
u
59
+ 3u
58
+ ··· + 274u 187
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
59
+ 3y
58
+ ··· 18y 1
c
2
, c
7
y
59
29y
58
+ ··· + 2y 1
c
3
y
59
+ 11y
58
+ ··· + 17370y 3721
c
4
, c
5
, c
11
y
59
45y
58
+ ··· + 2y 1
c
6
, c
9
, c
10
c
12
y
59
+ 71y
58
+ ··· 54y 25
c
8
y
59
+ 23y
58
+ ··· 139226y 34969
8