10
69
(K10a
38
)
A knot diagram
1
Linearized knot diagam
7 9 1 10 4 2 6 3 8 5
Solving Sequence
1,5
10 4 6
3,8
7 9 2
c
10
c
4
c
5
c
3
c
7
c
9
c
2
c
1
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
18
3u
17
+ ··· + b 3, 3u
18
7u
17
+ ··· + 2a 7, u
19
+ 3u
18
+ ··· + 7u + 2i
I
u
2
= h4u
13
a 17u
13
+ ··· + a + 22, 2u
13
a 2u
13
+ ··· 2a + 2,
u
14
u
13
3u
12
+ 4u
11
+ 4u
10
7u
9
u
8
+ 6u
7
2u
6
2u
5
+ 2u
4
u + 1i
I
u
3
= hu
3
+ b, u
2
+ a + u 1, u
4
u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 51 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
=
h−u
18
3u
17
+· · ·+b 3, 3u
18
7u
17
+· · ·+2a 7, u
19
+3u
18
+· · ·+7u +2i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
6
=
u
3
u
5
u
3
+ u
a
3
=
u
3
u
3
+ u
a
8
=
3
2
u
18
+
7
2
u
17
+ ··· +
17
2
u +
7
2
u
18
+ 3u
17
+ ··· + 8u + 3
a
7
=
1
2
u
18
+
3
2
u
17
+ ··· +
7
2
u +
3
2
u
17
+ u
16
+ ··· + 2u + 1
a
9
=
1
2
u
18
3
2
u
17
+ ···
7
2
u
1
2
u
17
u
16
+ ··· 3u 1
a
2
=
3
2
u
18
+
7
2
u
17
+ ··· +
17
2
u +
7
2
u
18
2u
17
+ ··· 4u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12u
18
+ 26u
17
24u
16
116u
15
42u
14
+ 200u
13
+ 222u
12
116u
11
334u
10
108u
9
+ 228u
8
+ 240u
7
4u
6
172u
5
118u
4
+ 12u
3
+ 78u
2
+ 64u + 30
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
19
+ 4u
17
+ ··· + 2u 1
c
3
u
19
9u
18
+ ··· + 157u 22
c
4
, c
10
u
19
3u
18
+ ··· + 7u 2
c
5
u
19
9u
18
+ ··· + 5u 4
c
7
, c
9
u
19
+ 8u
18
+ ··· 2u 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
19
+ 8y
18
+ ··· 2y 1
c
3
y
19
+ 3y
18
+ ··· + 1461y 484
c
4
, c
10
y
19
9y
18
+ ··· + 5y 4
c
5
y
19
+ 3y
18
+ ··· + 129y 16
c
7
, c
9
y
19
+ 12y
18
+ ··· + 30y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.656620 + 0.736849I
a = 0.530916 + 0.111769I
b = 0.692991 0.514666I
3.87251 6.01197I 0.18591 + 7.59122I
u = 0.656620 0.736849I
a = 0.530916 0.111769I
b = 0.692991 + 0.514666I
3.87251 + 6.01197I 0.18591 7.59122I
u = 0.833011 + 0.594872I
a = 0.493073 0.284708I
b = 0.042413 + 0.483034I
1.75185 + 2.35707I 4.45005 4.73717I
u = 0.833011 0.594872I
a = 0.493073 + 0.284708I
b = 0.042413 0.483034I
1.75185 2.35707I 4.45005 + 4.73717I
u = 0.342490 + 0.822016I
a = 0.423303 0.244228I
b = 0.84616 + 1.72998I
2.12081 + 8.87474I 0.63360 6.11132I
u = 0.342490 0.822016I
a = 0.423303 + 0.244228I
b = 0.84616 1.72998I
2.12081 8.87474I 0.63360 + 6.11132I
u = 0.954304 + 0.656562I
a = 1.022240 + 0.645581I
b = 0.517413 0.115037I
2.99077 + 0.72249I 1.52455 2.82827I
u = 0.954304 0.656562I
a = 1.022240 0.645581I
b = 0.517413 + 0.115037I
2.99077 0.72249I 1.52455 + 2.82827I
u = 1.178790 + 0.200823I
a = 1.12805 + 1.83215I
b = 0.06929 + 1.61595I
2.86306 5.96190I 6.84845 + 4.63798I
u = 1.178790 0.200823I
a = 1.12805 1.83215I
b = 0.06929 1.61595I
2.86306 + 5.96190I 6.84845 4.63798I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.160320 + 0.382174I
a = 0.30429 1.44141I
b = 0.996422 0.904006I
5.16612 + 4.98291I 9.41511 6.18167I
u = 1.160320 0.382174I
a = 0.30429 + 1.44141I
b = 0.996422 + 0.904006I
5.16612 4.98291I 9.41511 + 6.18167I
u = 1.141050 + 0.480142I
a = 0.96822 1.32852I
b = 0.00563 1.67007I
4.50851 3.09886I 9.38086 + 1.28227I
u = 1.141050 0.480142I
a = 0.96822 + 1.32852I
b = 0.00563 + 1.67007I
4.50851 + 3.09886I 9.38086 1.28227I
u = 1.143800 + 0.588812I
a = 1.12767 + 2.25574I
b = 0.96492 + 2.22818I
0.26882 14.12650I 3.54919 + 9.60559I
u = 1.143800 0.588812I
a = 1.12767 2.25574I
b = 0.96492 2.22818I
0.26882 + 14.12650I 3.54919 9.60559I
u = 0.085864 + 0.693927I
a = 0.667057 + 0.203041I
b = 0.176244 0.940079I
1.57783 1.22058I 5.73688 + 3.21713I
u = 0.085864 0.693927I
a = 0.667057 0.203041I
b = 0.176244 + 0.940079I
1.57783 + 1.22058I 5.73688 3.21713I
u = 0.695977
a = 0.715081
b = 0.538288
0.927841 11.2940
6
II. I
u
2
=
h4u
13
a17u
13
+· · ·+a+22, 2u
13
a2u
13
+· · ·2a+2, u
14
u
13
+· · ·u+1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
6
=
u
3
u
5
u
3
+ u
a
3
=
u
3
u
3
+ u
a
8
=
a
0.190476au
13
+ 0.809524u
13
+ ··· 0.0476190a 1.04762
a
7
=
0.190476au
13
0.190476u
13
+ ··· + 0.952381a 0.0476190
0.190476au
13
+ 0.190476u
13
+ ··· + 0.0476190a 0.952381
a
9
=
0.190476au
13
0.190476u
13
+ ··· + 0.952381a 0.0476190
0.619048au
13
+ 0.380952u
13
+ ··· + 0.0952381a 0.904762
a
2
=
2u
13
+ 7u
11
2u
10
12u
9
+ 6u
8
+ 8u
7
8u
6
+ 4u
4
3u
3
a + 2
0.190476au
13
0.190476u
13
+ ··· 0.0476190a + 0.952381
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
13
+ 16u
11
4u
10
28u
9
+ 12u
8
+ 20u
7
16u
6
+ 8u
4
8u
3
+ 6
7
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
u
28
u
27
+ ··· + 2u + 1
c
3
(u
14
+ 3u
13
+ ··· + 7u + 3)
2
c
4
, c
10
(u
14
+ u
13
+ ··· + u + 1)
2
c
5
(u
14
7u
13
+ ··· u + 1)
2
c
7
, c
9
u
28
+ 15u
27
+ ··· + 10u
2
+ 1
8
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
y
28
+ 15y
27
+ ··· + 10y
2
+ 1
c
3
(y
14
+ 5y
13
+ ··· + 23y + 9)
2
c
4
, c
10
(y
14
7y
13
+ ··· y + 1)
2
c
5
(y
14
+ y
13
+ ··· + 7y + 1)
2
c
7
, c
9
y
28
5y
27
+ ··· + 20y + 1
9
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.989783 + 0.381937I
a = 0.75275 1.27344I
b = 0.090790 0.426836I
1.59516 + 1.40484I 5.50927 0.52948I
u = 0.989783 + 0.381937I
a = 1.91833 + 1.38556I
b = 0.20805 + 2.13390I
1.59516 + 1.40484I 5.50927 0.52948I
u = 0.989783 0.381937I
a = 0.75275 + 1.27344I
b = 0.090790 + 0.426836I
1.59516 1.40484I 5.50927 + 0.52948I
u = 0.989783 0.381937I
a = 1.91833 1.38556I
b = 0.20805 2.13390I
1.59516 1.40484I 5.50927 + 0.52948I
u = 0.728347 + 0.560551I
a = 0.912076 0.177857I
b = 0.443852 + 0.575052I
1.84948 + 2.19128I 2.76081 3.85718I
u = 0.728347 + 0.560551I
a = 0.064777 0.599184I
b = 0.371682 + 0.254174I
1.84948 + 2.19128I 2.76081 3.85718I
u = 0.728347 0.560551I
a = 0.912076 + 0.177857I
b = 0.443852 0.575052I
1.84948 2.19128I 2.76081 + 3.85718I
u = 0.728347 0.560551I
a = 0.064777 + 0.599184I
b = 0.371682 0.254174I
1.84948 2.19128I 2.76081 + 3.85718I
u = 1.068410 + 0.522447I
a = 1.02538 + 1.04810I
b = 0.439782 + 0.298160I
2.72606 5.07185I 2.32847 + 6.33126I
u = 1.068410 + 0.522447I
a = 0.47730 + 2.74473I
b = 1.89542 + 1.97549I
2.72606 5.07185I 2.32847 + 6.33126I
10
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.068410 0.522447I
a = 1.02538 1.04810I
b = 0.439782 0.298160I
2.72606 + 5.07185I 2.32847 6.33126I
u = 1.068410 0.522447I
a = 0.47730 2.74473I
b = 1.89542 1.97549I
2.72606 + 5.07185I 2.32847 6.33126I
u = 1.157220 + 0.286866I
a = 0.208422 + 0.989667I
b = 0.809510 + 0.540535I
4.53640 + 0.47055I 9.32829 + 0.18349I
u = 1.157220 + 0.286866I
a = 1.17269 1.74006I
b = 0.06603 1.71504I
4.53640 + 0.47055I 9.32829 + 0.18349I
u = 1.157220 0.286866I
a = 0.208422 0.989667I
b = 0.809510 0.540535I
4.53640 0.47055I 9.32829 0.18349I
u = 1.157220 0.286866I
a = 1.17269 + 1.74006I
b = 0.06603 + 1.71504I
4.53640 0.47055I 9.32829 0.18349I
u = 0.268039 + 0.757899I
a = 0.805404 0.051418I
b = 0.148756 + 0.914884I
0.22261 3.62879I 3.66617 + 2.63226I
u = 0.268039 + 0.757899I
a = 0.143310 + 0.427216I
b = 0.80984 1.45942I
0.22261 3.62879I 3.66617 + 2.63226I
u = 0.268039 0.757899I
a = 0.805404 + 0.051418I
b = 0.148756 0.914884I
0.22261 + 3.62879I 3.66617 2.63226I
u = 0.268039 0.757899I
a = 0.143310 0.427216I
b = 0.80984 + 1.45942I
0.22261 + 3.62879I 3.66617 2.63226I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.142590 + 0.546762I
a = 0.78194 + 1.24283I
b = 0.06519 + 1.60824I
2.77434 + 8.53123I 6.72348 6.18031I
u = 1.142590 + 0.546762I
a = 0.88693 2.21821I
b = 1.12473 1.96518I
2.77434 + 8.53123I 6.72348 6.18031I
u = 1.142590 0.546762I
a = 0.78194 1.24283I
b = 0.06519 1.60824I
2.77434 8.53123I 6.72348 + 6.18031I
u = 1.142590 0.546762I
a = 0.88693 + 2.21821I
b = 1.12473 + 1.96518I
2.77434 8.53123I 6.72348 + 6.18031I
u = 0.403136 + 0.584808I
a = 1.142350 + 0.668190I
b = 0.860151 0.151246I
4.65252 + 0.62859I 2.31651 1.42251I
u = 0.403136 + 0.584808I
a = 0.445488 1.297380I
b = 1.48801 + 1.19980I
4.65252 + 0.62859I 2.31651 1.42251I
u = 0.403136 0.584808I
a = 1.142350 0.668190I
b = 0.860151 + 0.151246I
4.65252 0.62859I 2.31651 + 1.42251I
u = 0.403136 0.584808I
a = 0.445488 + 1.297380I
b = 1.48801 1.19980I
4.65252 0.62859I 2.31651 + 1.42251I
12
III. I
u
3
= hu
3
+ b, u
2
+ a + u 1, u
4
u
2
+ 1i
(i) Arc colorings
a
1
=
1
0
a
5
=
0
u
a
10
=
1
u
2
a
4
=
u
u
3
+ u
a
6
=
u
3
0
a
3
=
u
3
u
3
+ u
a
8
=
u
2
u + 1
u
3
a
7
=
u
3
u
2
u + 1
u
3
a
9
=
u
2
u + 2
u
3
+ u
2
a
2
=
u
2
+ u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
(u
2
+ 1)
2
c
3
, c
4
, c
10
u
4
u
2
+ 1
c
5
(u
2
u + 1)
2
c
7
, c
9
(u + 1)
4
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
(y + 1)
4
c
3
, c
4
, c
10
(y
2
y + 1)
2
c
5
(y
2
+ y + 1)
2
c
7
, c
9
(y 1)
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.866025 + 0.500000I
a = 0.36603 1.36603I
b = 1.000000I
3.28987 + 2.02988I 2.00000 3.46410I
u = 0.866025 0.500000I
a = 0.36603 + 1.36603I
b = 1.000000I
3.28987 2.02988I 2.00000 + 3.46410I
u = 0.866025 + 0.500000I
a = 1.36603 + 0.36603I
b = 1.000000I
3.28987 2.02988I 2.00000 + 3.46410I
u = 0.866025 0.500000I
a = 1.36603 0.36603I
b = 1.000000I
3.28987 + 2.02988I 2.00000 3.46410I
16
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
8
((u
2
+ 1)
2
)(u
19
+ 4u
17
+ ··· + 2u 1)(u
28
u
27
+ ··· + 2u + 1)
c
3
(u
4
u
2
+ 1)(u
14
+ 3u
13
+ ··· + 7u + 3)
2
(u
19
9u
18
+ ··· + 157u 22)
c
4
, c
10
(u
4
u
2
+ 1)(u
14
+ u
13
+ ··· + u + 1)
2
(u
19
3u
18
+ ··· + 7u 2)
c
5
((u
2
u + 1)
2
)(u
14
7u
13
+ ··· u + 1)
2
(u
19
9u
18
+ ··· + 5u 4)
c
7
, c
9
((u + 1)
4
)(u
19
+ 8u
18
+ ··· 2u 1)(u
28
+ 15u
27
+ ··· + 10u
2
+ 1)
17
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
8
((y + 1)
4
)(y
19
+ 8y
18
+ ··· 2y 1)(y
28
+ 15y
27
+ ··· + 10y
2
+ 1)
c
3
((y
2
y + 1)
2
)(y
14
+ 5y
13
+ ··· + 23y + 9)
2
· (y
19
+ 3y
18
+ ··· + 1461y 484)
c
4
, c
10
((y
2
y + 1)
2
)(y
14
7y
13
+ ··· y + 1)
2
(y
19
9y
18
+ ··· + 5y 4)
c
5
((y
2
+ y + 1)
2
)(y
14
+ y
13
+ ··· + 7y + 1)
2
· (y
19
+ 3y
18
+ ··· + 129y 16)
c
7
, c
9
((y 1)
4
)(y
19
+ 12y
18
+ ··· + 30y 1)(y
28
5y
27
+ ··· + 20y + 1)
18