12a
0742
(K12a
0742
)
A knot diagram
1
Linearized knot diagam
3 8 9 12 10 11 2 7 1 6 4 5
Solving Sequence
2,7
8 3 9 4
1,11
6 10 5 12
c
7
c
2
c
8
c
3
c
1
c
6
c
10
c
5
c
12
c
4
, c
9
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= hu
32
u
31
+ ··· + b 1, u
33
+ 5u
32
+ ··· + 2a 8, u
34
3u
33
+ ··· + 8u 2i
I
u
2
= h−2u
4
a u
3
a + 3u
4
+ u
3
u
2
+ 2b 3a + 6, 2u
4
a u
3
a + 3u
4
+ 3u
3
+ a
2
+ au 2u
2
3a + u + 4,
u
5
+ u
4
+ 2u + 1i
I
u
3
= hb 1, u
3
+ 2u
2
+ 2a u, u
4
u
2
+ 2i
I
u
4
= h−3u
15
a 4u
14
a + ··· 6a + 4, u
15
a u
15
+ ··· + a
2
a,
u
16
+ u
15
2u
14
3u
13
+ 4u
12
+ 7u
11
3u
10
10u
9
+ 9u
7
+ 3u
6
5u
5
4u
4
+ 2u
2
+ 2u + 1i
I
u
5
= hb + 1, a + u 1, u
4
+ 1i
I
u
6
= hb, a + 1, u 1i
I
u
7
= hb 1, a 1, u 1i
I
u
8
= hb 1, a, u 1i
I
u
9
= hb 1, a 2, u + 1i
I
v
1
= ha, b + 1, v + 1i
* 10 irreducible components of dim
C
= 0, with total 89 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
32
u
31
+· · ·+b1, u
33
+5u
32
+· · ·+2a8, u
34
3u
33
+· · ·+8u2i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
2
a
4
=
u
7
2u
5
+ 2u
3
2u
u
7
+ u
5
2u
3
+ u
a
1
=
u
3
u
5
u
3
+ u
a
11
=
1
2
u
33
5
2
u
32
+ ··· 9u + 4
u
32
+ u
31
+ ··· 4u + 1
a
6
=
3
2
u
33
7
2
u
32
+ ··· 8u + 3
u
33
+ 2u
32
+ ··· + 4u 1
a
10
=
u
10
+ u
8
2u
6
+ u
4
u
2
+ 1
u
12
+ 2u
10
4u
8
+ 4u
6
3u
4
+ 2u
2
a
5
=
7
2
u
33
17
2
u
32
+ ··· 20u + 6
3u
33
+ 6u
32
+ ··· + 12u 3
a
12
=
1
2
u
33
3
2
u
32
+ ··· 5u + 2
u
32
+ u
31
+ ··· 3u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8u
33
+ 18u
32
+ 24u
31
98u
30
34u
29
+ 324u
28
48u
27
778u
26
+ 404u
25
+ 1380u
24
1192u
23
1882u
22
+ 2412u
21
+ 1850u
20
3712u
19
984u
18
+ 4390u
17
460u
16
3998u
15
+ 1854u
14
+ 2552u
13
2452u
12
726u
11
+
1942u
10
470u
9
954u
8
+ 796u
7
+ 110u
6
512u
5
+ 270u
4
+ 50u
3
132u
2
+ 74u 20
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
34
+ 11u
33
+ ··· 16u + 4
c
2
, c
7
u
34
+ 3u
33
+ ··· 8u 2
c
3
u
34
3u
33
+ ··· + 848u 296
c
4
, c
5
, c
6
c
10
, c
11
, c
12
u
34
u
33
+ ··· + u + 1
c
9
u
34
+ 21u
33
+ ··· 40228u 4366
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
34
+ 25y
33
+ ··· 288y + 16
c
2
, c
7
y
34
11y
33
+ ··· + 16y + 4
c
3
y
34
+ y
33
+ ··· + 674464y + 87616
c
4
, c
5
, c
6
c
10
, c
11
, c
12
y
34
43y
33
+ ··· 9y + 1
c
9
y
34
+ 13y
33
+ ··· + 56365904y + 19061956
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.988927 + 0.109578I
a = 0.431526 + 1.228470I
b = 0.276236 + 0.567180I
3.24927 + 2.65062I 6.82528 6.63039I
u = 0.988927 0.109578I
a = 0.431526 1.228470I
b = 0.276236 0.567180I
3.24927 2.65062I 6.82528 + 6.63039I
u = 0.739127 + 0.741106I
a = 0.930370 + 0.017261I
b = 0.485252 0.215051I
3.09736 + 0.68740I 3.83595 3.91295I
u = 0.739127 0.741106I
a = 0.930370 0.017261I
b = 0.485252 + 0.215051I
3.09736 0.68740I 3.83595 + 3.91295I
u = 0.718436 + 0.774498I
a = 0.812978 + 0.075813I
b = 0.412168 0.529259I
2.64462 + 2.18332I 2.21430 4.77335I
u = 0.718436 0.774498I
a = 0.812978 0.075813I
b = 0.412168 + 0.529259I
2.64462 2.18332I 2.21430 + 4.77335I
u = 0.939426
a = 0.0259566
b = 0.428300
1.90429 3.14100
u = 0.891331 + 0.603370I
a = 0.422005 + 0.483472I
b = 0.066256 + 0.592921I
0.69654 2.34709I 4.49475 + 2.27928I
u = 0.891331 0.603370I
a = 0.422005 0.483472I
b = 0.066256 0.592921I
0.69654 + 2.34709I 4.49475 2.27928I
u = 1.005180 + 0.389797I
a = 0.154937 + 0.640657I
b = 1.52677 0.22591I
9.88665 + 2.86032I 4.26747 + 0.39615I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.005180 0.389797I
a = 0.154937 0.640657I
b = 1.52677 + 0.22591I
9.88665 2.86032I 4.26747 0.39615I
u = 1.076760 + 0.192034I
a = 0.23388 1.88626I
b = 1.52621 0.30047I
8.67508 + 9.43470I 2.55855 6.18677I
u = 1.076760 0.192034I
a = 0.23388 + 1.88626I
b = 1.52621 + 0.30047I
8.67508 9.43470I 2.55855 + 6.18677I
u = 1.10214
a = 1.33391
b = 1.42323
3.37001 2.15130
u = 0.701066 + 0.850551I
a = 2.07986 + 0.41696I
b = 1.56353 + 0.32987I
15.6899 + 9.3353I 8.75460 3.54458I
u = 0.701066 0.850551I
a = 2.07986 0.41696I
b = 1.56353 0.32987I
15.6899 9.3353I 8.75460 + 3.54458I
u = 0.506457 + 0.733877I
a = 1.048590 + 0.101195I
b = 1.46790 0.05121I
8.81248 + 1.35417I 8.27726 0.26965I
u = 0.506457 0.733877I
a = 1.048590 0.101195I
b = 1.46790 + 0.05121I
8.81248 1.35417I 8.27726 + 0.26965I
u = 0.804999 + 0.836403I
a = 2.48607 + 0.64116I
b = 1.62501 + 0.21278I
17.5746 + 4.9413I 9.92383 3.25429I
u = 0.804999 0.836403I
a = 2.48607 0.64116I
b = 1.62501 0.21278I
17.5746 4.9413I 9.92383 + 3.25429I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.966971 + 0.696899I
a = 0.486334 + 0.622660I
b = 0.511243 0.168909I
2.40071 + 4.80114I 1.91928 2.14166I
u = 0.966971 0.696899I
a = 0.486334 0.622660I
b = 0.511243 + 0.168909I
2.40071 4.80114I 1.91928 + 2.14166I
u = 1.032170 + 0.632265I
a = 0.17093 1.70332I
b = 1.43085 0.07072I
7.31130 6.52330I 5.94001 + 5.49172I
u = 1.032170 0.632265I
a = 0.17093 + 1.70332I
b = 1.43085 + 0.07072I
7.31130 + 6.52330I 5.94001 5.49172I
u = 0.986491 + 0.714526I
a = 1.35111 0.66802I
b = 0.407979 0.571160I
1.83243 7.82430I 0.40818 + 9.67142I
u = 0.986491 0.714526I
a = 1.35111 + 0.66802I
b = 0.407979 + 0.571160I
1.83243 + 7.82430I 0.40818 9.67142I
u = 0.957491 + 0.784549I
a = 1.91646 1.35507I
b = 1.62922 + 0.19094I
17.1033 + 1.1035I 9.17994 1.90960I
u = 0.957491 0.784549I
a = 1.91646 + 1.35507I
b = 1.62922 0.19094I
17.1033 1.1035I 9.17994 + 1.90960I
u = 1.022640 + 0.743834I
a = 1.85346 + 2.37415I
b = 1.55431 + 0.34115I
14.7022 15.2836I 7.11885 + 8.33563I
u = 1.022640 0.743834I
a = 1.85346 2.37415I
b = 1.55431 0.34115I
14.7022 + 15.2836I 7.11885 8.33563I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.122815 + 0.705145I
a = 2.12345 0.61721I
b = 1.55687 0.26874I
12.6181 6.5965I 9.17145 + 3.77893I
u = 0.122815 0.705145I
a = 2.12345 + 0.61721I
b = 1.55687 + 0.26874I
12.6181 + 6.5965I 9.17145 3.77893I
u = 0.129052 + 0.423858I
a = 0.854310 + 0.046698I
b = 0.261902 + 0.382447I
0.121984 0.976428I 2.24524 + 6.97728I
u = 0.129052 0.423858I
a = 0.854310 0.046698I
b = 0.261902 0.382447I
0.121984 + 0.976428I 2.24524 6.97728I
8
II. I
u
2
= h−2u
4
a u
3
a + 3u
4
+ u
3
u
2
+ 2b 3a + 6, 2u
4
a + 3u
4
+ · · ·
3a + 4, u
5
+ u
4
+ 2u + 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
2
a
4
=
u
4
+ u
2
+ u + 1
u
2
a
1
=
u
3
u
4
u
3
u 1
a
11
=
a
u
4
a
3
2
u
4
+ ··· +
3
2
a 3
a
6
=
3
2
u
4
a u
4
+ ··· + 3a 3
1
2
u
4
a + u
4
+ ··· a +
5
2
a
10
=
u
4
u
2
+ 2u + 2
u
3
u
a
5
=
2u
4
a 2u
4
+ ··· + 4a
11
2
1
2
u
4
a +
1
2
u
4
+ ···
1
2
a +
3
2
a
12
=
u
4
a
1
2
u
4
+ ··· +
5
2
a 2
1
2
u
4
a u
4
+ ··· + a 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
4u
3
+ 4u
2
2
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
5
+ u
4
+ 4u
3
+ 2u
2
+ 4u + 1)
2
c
2
, c
7
(u
5
u
4
+ 2u 1)
2
c
3
(u
5
+ 4u
4
+ 9u
3
+ 9u
2
+ 4u 4)
2
c
4
, c
5
, c
6
c
10
, c
11
, c
12
u
10
u
9
4u
8
+ 4u
7
+ 4u
6
3u
5
3u
4
u
3
+ 9u
2
2u 5
c
9
(u
5
u
4
+ 4u
3
2u
2
+ 4u 1)
2
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
9
(y
5
+ 7y
4
+ 20y
3
+ 26y
2
+ 12y 1)
2
c
2
, c
7
(y
5
y
4
+ 4y
3
2y
2
+ 4y 1)
2
c
3
(y
5
+ 2y
4
+ 17y
3
+ 23y
2
+ 88y 16)
2
c
4
, c
5
, c
6
c
10
, c
11
, c
12
y
10
9y
9
+ ··· 94y + 25
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.760506 + 0.815892I
a = 0.989553 0.173629I
b = 0.733353 + 0.825839I
9.59182 1.13825I 8.09602 + 2.34058I
u = 0.760506 + 0.815892I
a = 2.89378 0.20313I
b = 1.49386 0.00995I
9.59182 1.13825I 8.09602 + 2.34058I
u = 0.760506 0.815892I
a = 0.989553 + 0.173629I
b = 0.733353 0.825839I
9.59182 + 1.13825I 8.09602 2.34058I
u = 0.760506 0.815892I
a = 2.89378 + 0.20313I
b = 1.49386 + 0.00995I
9.59182 + 1.13825I 8.09602 2.34058I
u = 1.001870 + 0.741764I
a = 1.58501 + 0.67934I
b = 0.487815 + 0.934585I
8.07331 + 10.61130I 5.23519 7.85454I
u = 1.001870 + 0.741764I
a = 2.22820 2.29189I
b = 1.48968 0.19282I
8.07331 + 10.61130I 5.23519 7.85454I
u = 1.001870 0.741764I
a = 1.58501 0.67934I
b = 0.487815 0.934585I
8.07331 10.61130I 5.23519 + 7.85454I
u = 1.001870 0.741764I
a = 2.22820 + 2.29189I
b = 1.48968 + 0.19282I
8.07331 10.61130I 5.23519 + 7.85454I
u = 0.517281
a = 1.16595
b = 1.15268
2.50323 0.662420
u = 0.517281
a = 2.35611
b = 0.635404
2.50323 0.662420
12
III. I
u
3
= hb 1, u
3
+ 2u
2
+ 2a u, u
4
u
2
+ 2i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
2
a
4
=
u
3
u
a
1
=
u
3
u
a
11
=
1
2
u
3
u
2
+
1
2
u
1
a
6
=
1
2
u
3
u
2
+
1
2
u + 1
1
a
10
=
1
0
a
5
=
1
2
u
3
u
2
+
1
2
u
1
a
12
=
1
2
u
3
u
2
+
1
2
u
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 2)
2
c
2
, c
3
, c
7
c
9
u
4
u
2
+ 2
c
4
, c
10
(u + 1)
4
c
5
, c
6
, c
11
c
12
(u 1)
4
c
8
(u
2
+ u + 2)
2
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
2
+ 3y + 4)
2
c
2
, c
3
, c
7
c
9
(y
2
y + 2)
2
c
4
, c
5
, c
6
c
10
, c
11
, c
12
(y 1)
4
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.978318 + 0.676097I
a = 0.19178 1.80095I
b = 1.00000
4.11234 5.33349I 6.00000 + 5.29150I
u = 0.978318 0.676097I
a = 0.19178 + 1.80095I
b = 1.00000
4.11234 + 5.33349I 6.00000 5.29150I
u = 0.978318 + 0.676097I
a = 1.19178 + 0.84480I
b = 1.00000
4.11234 + 5.33349I 6.00000 5.29150I
u = 0.978318 0.676097I
a = 1.19178 0.84480I
b = 1.00000
4.11234 5.33349I 6.00000 + 5.29150I
16
IV. I
u
4
=
h−3u
15
a4u
14
a+· · ·6a+4, u
15
au
15
+· · ·+a
2
a, u
16
+u
15
+· · ·+2u+1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
2
a
4
=
u
7
2u
5
+ 2u
3
2u
u
7
+ u
5
2u
3
+ u
a
1
=
u
3
u
5
u
3
+ u
a
11
=
a
3u
15
a + 4u
14
a + ··· + 6a 4
a
6
=
3u
14
a + 3u
15
+ ··· + 3a + u
5u
15
a + 3u
15
+ ··· 7a + 7
a
10
=
u
10
+ u
8
2u
6
+ u
4
u
2
+ 1
u
12
+ 2u
10
4u
8
+ 4u
6
3u
4
+ 2u
2
a
5
=
5u
15
a + 6u
14
a + ··· + 10a 7
5u
15
a + 6u
15
+ ··· 4a + 8
a
12
=
3u
15
a + u
15
+ ··· + 7a 1
3u
15
a + 5u
15
+ ··· a + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
12
8u
10
+ 16u
8
+ 4u
7
16u
6
8u
5
+ 12u
4
+ 8u
3
4u
2
4u + 2
17
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
16
+ 5u
15
+ ··· 4u
2
+ 1)
2
c
2
, c
7
(u
16
u
15
+ ··· 2u + 1)
2
c
3
(u
8
2u
7
+ 3u
6
+ u
4
+ 2u
2
2u + 1)
4
c
4
, c
5
, c
6
c
10
, c
11
, c
12
u
32
u
31
+ ··· + 6u + 3
c
9
(u
16
5u
15
+ ··· 4u
2
+ 1)
2
18
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
, c
9
(y
16
+ 11y
15
+ ··· 8y + 1)
2
c
2
, c
7
(y
16
5y
15
+ ··· 4y
2
+ 1)
2
c
3
(y
8
+ 2y
7
+ 11y
6
+ 10y
5
+ 7y
4
+ 10y
3
+ 6y
2
+ 1)
4
c
4
, c
5
, c
6
c
10
, c
11
, c
12
y
32
27y
31
+ ··· + 102y + 9
19
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 1.017320 + 0.191091I
a = 0.34975 1.64157I
b = 0.458488 0.829230I
2.20856 5.29622I 0.10789 + 6.28296I
u = 1.017320 + 0.191091I
a = 0.23817 + 1.83664I
b = 1.41899 + 0.17495I
2.20856 5.29622I 0.10789 + 6.28296I
u = 1.017320 0.191091I
a = 0.34975 + 1.64157I
b = 0.458488 + 0.829230I
2.20856 + 5.29622I 0.10789 6.28296I
u = 1.017320 0.191091I
a = 0.23817 1.83664I
b = 1.41899 0.17495I
2.20856 + 5.29622I 0.10789 6.28296I
u = 0.908738 + 0.252477I
a = 1.024170 0.602730I
b = 0.650125 0.629128I
2.96149 + 0.25270I 1.61015 0.96511I
u = 0.908738 + 0.252477I
a = 0.672335 1.024320I
b = 1.358490 + 0.017727I
2.96149 + 0.25270I 1.61015 0.96511I
u = 0.908738 0.252477I
a = 1.024170 + 0.602730I
b = 0.650125 + 0.629128I
2.96149 0.25270I 1.61015 + 0.96511I
u = 0.908738 0.252477I
a = 0.672335 + 1.024320I
b = 1.358490 0.017727I
2.96149 0.25270I 1.61015 + 0.96511I
u = 0.708362 + 0.611401I
a = 0.955612 0.379206I
b = 0.244922 0.372311I
2.96149 0.25270I 1.61015 + 0.96511I
u = 0.708362 + 0.611401I
a = 0.938047 + 0.006205I
b = 1.153660 + 0.119834I
2.96149 0.25270I 1.61015 + 0.96511I
20
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.708362 0.611401I
a = 0.955612 + 0.379206I
b = 0.244922 + 0.372311I
2.96149 + 0.25270I 1.61015 0.96511I
u = 0.708362 0.611401I
a = 0.938047 0.006205I
b = 1.153660 0.119834I
2.96149 + 0.25270I 1.61015 0.96511I
u = 0.724199 + 0.826388I
a = 0.657035 0.259025I
b = 0.514081 + 0.923230I
8.92422 4.73566I 6.88636 + 2.91588I
u = 0.724199 + 0.826388I
a = 2.59244 0.38162I
b = 1.49162 0.17329I
8.92422 4.73566I 6.88636 + 2.91588I
u = 0.724199 0.826388I
a = 0.657035 + 0.259025I
b = 0.514081 0.923230I
8.92422 + 4.73566I 6.88636 2.91588I
u = 0.724199 0.826388I
a = 2.59244 + 0.38162I
b = 1.49162 + 0.17329I
8.92422 + 4.73566I 6.88636 2.91588I
u = 0.866890 + 0.696274I
a = 1.54948 0.22013I
b = 1.165260 0.286760I
5.64493 2.67607I 7.61139 + 3.32415I
u = 0.866890 + 0.696274I
a = 1.67678 2.03785I
b = 1.105310 0.336093I
5.64493 2.67607I 7.61139 + 3.32415I
u = 0.866890 0.696274I
a = 1.54948 + 0.22013I
b = 1.165260 + 0.286760I
5.64493 + 2.67607I 7.61139 3.32415I
u = 0.866890 0.696274I
a = 1.67678 + 2.03785I
b = 1.105310 + 0.336093I
5.64493 + 2.67607I 7.61139 3.32415I
21
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.960503 + 0.654282I
a = 0.422425 0.451767I
b = 0.055277 0.354087I
2.20856 + 5.29622I 0.10789 6.28296I
u = 0.960503 + 0.654282I
a = 0.64027 + 1.59232I
b = 1.072600 + 0.162995I
2.20856 + 5.29622I 0.10789 6.28296I
u = 0.960503 0.654282I
a = 0.422425 + 0.451767I
b = 0.055277 + 0.354087I
2.20856 5.29622I 0.10789 + 6.28296I
u = 0.960503 0.654282I
a = 0.64027 1.59232I
b = 1.072600 0.162995I
2.20856 5.29622I 0.10789 + 6.28296I
u = 0.977539 + 0.749941I
a = 0.252677 0.865283I
b = 0.767790 + 0.810448I
8.92422 4.73566I 6.88636 + 2.91588I
u = 0.977539 + 0.749941I
a = 2.43403 + 1.75259I
b = 1.49199 + 0.01594I
8.92422 4.73566I 6.88636 + 2.91588I
u = 0.977539 0.749941I
a = 0.252677 + 0.865283I
b = 0.767790 0.810448I
8.92422 + 4.73566I 6.88636 2.91588I
u = 0.977539 0.749941I
a = 2.43403 1.75259I
b = 1.49199 0.01594I
8.92422 + 4.73566I 6.88636 2.91588I
u = 0.059947 + 0.622852I
a = 0.761202 + 0.086440I
b = 0.568590 0.799912I
5.64493 + 2.67607I 7.61139 3.32415I
u = 0.059947 + 0.622852I
a = 2.80109 + 0.48436I
b = 1.43548 + 0.10364I
5.64493 + 2.67607I 7.61139 3.32415I
22
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.059947 0.622852I
a = 0.761202 0.086440I
b = 0.568590 + 0.799912I
5.64493 2.67607I 7.61139 + 3.32415I
u = 0.059947 0.622852I
a = 2.80109 0.48436I
b = 1.43548 0.10364I
5.64493 2.67607I 7.61139 + 3.32415I
23
V. I
u
5
= hb + 1, a + u 1, u
4
+ 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
2
a
4
=
u
3
u
3
a
1
=
u
3
u
3
a
11
=
u + 1
1
a
6
=
u
1
a
10
=
1
0
a
5
=
u 1
1
a
12
=
u
3
u + 1
u
3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
24
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
(u
2
+ 1)
2
c
2
, c
3
, c
7
c
9
u
4
+ 1
c
4
, c
10
(u 1)
4
c
5
, c
6
, c
11
c
12
(u + 1)
4
25
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y + 1)
4
c
2
, c
3
, c
7
c
9
(y
2
+ 1)
2
c
4
, c
5
, c
6
c
10
, c
11
, c
12
(y 1)
4
26
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.707107 + 0.707107I
a = 0.292893 0.707107I
b = 1.00000
4.93480 8.00000
u = 0.707107 0.707107I
a = 0.292893 + 0.707107I
b = 1.00000
4.93480 8.00000
u = 0.707107 + 0.707107I
a = 1.70711 0.70711I
b = 1.00000
4.93480 8.00000
u = 0.707107 0.707107I
a = 1.70711 + 0.70711I
b = 1.00000
4.93480 8.00000
27
VI. I
u
6
= hb, a + 1, u 1i
(i) Arc colorings
a
2
=
0
1
a
7
=
1
0
a
8
=
1
1
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
1
=
1
1
a
11
=
1
0
a
6
=
1
0
a
10
=
1
0
a
5
=
1
0
a
12
=
0
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
28
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
, c
8
c
11
, c
12
u + 1
c
5
, c
6
, c
10
u
c
9
u 1
29
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
7
, c
8
c
9
, c
11
, c
12
y 1
c
5
, c
6
, c
10
y
30
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 0
1.64493 6.00000
31
VII. I
u
7
= hb 1, a 1, u 1i
(i) Arc colorings
a
2
=
0
1
a
7
=
1
0
a
8
=
1
1
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
1
=
1
1
a
11
=
1
1
a
6
=
2
1
a
10
=
1
0
a
5
=
1
1
a
12
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 6
32
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
10
u + 1
c
4
, c
11
, c
12
u
c
9
u 1
33
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
7
c
8
, c
9
, c
10
y 1
c
4
, c
11
, c
12
y
34
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 1.00000
a = 1.00000
b = 1.00000
1.64493 6.00000
35
VIII. I
u
8
= hb 1, a, u 1i
(i) Arc colorings
a
2
=
0
1
a
7
=
1
0
a
8
=
1
1
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
1
=
1
1
a
11
=
0
1
a
6
=
1
1
a
10
=
1
0
a
5
=
0
1
a
12
=
1
2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
36
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
5
, c
6
c
7
, c
11
, c
12
u 1
c
2
, c
3
, c
4
c
8
, c
9
, c
10
u + 1
37
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
38
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 1.00000
a = 0
b = 1.00000
0 0
39
IX. I
u
9
= hb 1, a 2, u + 1i
(i) Arc colorings
a
2
=
0
1
a
7
=
1
0
a
8
=
1
1
a
3
=
1
0
a
9
=
0
1
a
4
=
1
1
a
1
=
1
1
a
11
=
2
1
a
6
=
3
1
a
10
=
1
0
a
5
=
2
1
a
12
=
1
0
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0
40
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
5
, c
6
, c
9
c
11
, c
12
u 1
c
4
, c
7
, c
8
c
10
u + 1
41
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
5
, c
6
c
7
, c
8
, c
9
c
10
, c
11
, c
12
y 1
42
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 1.00000
a = 2.00000
b = 1.00000
0 0
43
X. I
v
1
= ha, b + 1, v + 1i
(i) Arc colorings
a
2
=
1
0
a
7
=
1
0
a
8
=
1
0
a
3
=
1
0
a
9
=
1
0
a
4
=
1
0
a
1
=
1
0
a
11
=
0
1
a
6
=
1
1
a
10
=
1
0
a
5
=
0
1
a
12
=
1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 12
44
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
u
c
4
, c
10
u 1
c
5
, c
6
, c
11
c
12
u + 1
45
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
7
, c
8
, c
9
y
c
4
, c
5
, c
6
c
10
, c
11
, c
12
y 1
46
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.00000
a = 0
b = 1.00000
3.28987 12.0000
47
XI. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u(u 1)
2
(u + 1)
2
(u
2
+ 1)
2
(u
2
u + 2)
2
· ((u
5
+ u
4
+ 4u
3
+ 2u
2
+ 4u + 1)
2
)(u
16
+ 5u
15
+ ··· 4u
2
+ 1)
2
· (u
34
+ 11u
33
+ ··· 16u + 4)
c
2
, c
7
u(u 1)(u + 1)
3
(u
4
+ 1)(u
4
u
2
+ 2)(u
5
u
4
+ 2u 1)
2
· ((u
16
u
15
+ ··· 2u + 1)
2
)(u
34
+ 3u
33
+ ··· 8u 2)
c
3
u(u 1)(u + 1)
3
(u
4
+ 1)(u
4
u
2
+ 2)(u
5
+ 4u
4
+ ··· + 4u 4)
2
· ((u
8
2u
7
+ 3u
6
+ u
4
+ 2u
2
2u + 1)
4
)(u
34
3u
33
+ ··· + 848u 296)
c
4
, c
10
u(u 1)
5
(u + 1)
7
· (u
10
u
9
4u
8
+ 4u
7
+ 4u
6
3u
5
3u
4
u
3
+ 9u
2
2u 5)
· (u
32
u
31
+ ··· + 6u + 3)(u
34
u
33
+ ··· + u + 1)
c
5
, c
6
, c
11
c
12
u(u 1)
6
(u + 1)
6
· (u
10
u
9
4u
8
+ 4u
7
+ 4u
6
3u
5
3u
4
u
3
+ 9u
2
2u 5)
· (u
32
u
31
+ ··· + 6u + 3)(u
34
u
33
+ ··· + u + 1)
c
8
u(u + 1)
4
(u
2
+ 1)
2
(u
2
+ u + 2)
2
(u
5
+ u
4
+ 4u
3
+ 2u
2
+ 4u + 1)
2
· ((u
16
+ 5u
15
+ ··· 4u
2
+ 1)
2
)(u
34
+ 11u
33
+ ··· 16u + 4)
c
9
u(u 1)
3
(u + 1)(u
4
+ 1)(u
4
u
2
+ 2)(u
5
u
4
+ ··· + 4u 1)
2
· ((u
16
5u
15
+ ··· 4u
2
+ 1)
2
)(u
34
+ 21u
33
+ ··· 40228u 4366)
48
XII. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
y(y 1)
4
(y + 1)
4
(y
2
+ 3y + 4)
2
· ((y
5
+ 7y
4
+ 20y
3
+ 26y
2
+ 12y 1)
2
)(y
16
+ 11y
15
+ ··· 8y + 1)
2
· (y
34
+ 25y
33
+ ··· 288y + 16)
c
2
, c
7
y(y 1)
4
(y
2
+ 1)
2
(y
2
y + 2)
2
(y
5
y
4
+ 4y
3
2y
2
+ 4y 1)
2
· ((y
16
5y
15
+ ··· 4y
2
+ 1)
2
)(y
34
11y
33
+ ··· + 16y + 4)
c
3
y(y 1)
4
(y
2
+ 1)
2
(y
2
y + 2)
2
· (y
5
+ 2y
4
+ 17y
3
+ 23y
2
+ 88y 16)
2
· (y
8
+ 2y
7
+ 11y
6
+ 10y
5
+ 7y
4
+ 10y
3
+ 6y
2
+ 1)
4
· (y
34
+ y
33
+ ··· + 674464y + 87616)
c
4
, c
5
, c
6
c
10
, c
11
, c
12
y(y 1)
12
(y
10
9y
9
+ ··· 94y + 25)(y
32
27y
31
+ ··· + 102y + 9)
· (y
34
43y
33
+ ··· 9y + 1)
c
9
y(y 1)
4
(y
2
+ 1)
2
(y
2
y + 2)
2
· ((y
5
+ 7y
4
+ 20y
3
+ 26y
2
+ 12y 1)
2
)(y
16
+ 11y
15
+ ··· 8y + 1)
2
· (y
34
+ 13y
33
+ ··· + 56365904y + 19061956)
49