12a
0744
(K12a
0744
)
A knot diagram
1
Linearized knot diagam
3 8 9 12 11 10 2 1 7 6 5 4
Solving Sequence
6,11
5 12 4 1 10 7 9 3 8 2
c
5
c
11
c
4
c
12
c
10
c
6
c
9
c
3
c
8
c
2
c
1
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
30
+ u
29
+ ··· + u + 1i
* 1 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
30
+ u
29
+ · · · + u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
12
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
3
+ 2u
u
5
+ 3u
3
+ u
a
10
=
u
u
a
7
=
u
2
+ 1
u
2
a
9
=
u
3
2u
u
3
+ u
a
3
=
u
10
7u
8
16u
6
13u
4
u
2
+ 1
u
10
+ 6u
8
+ 11u
6
+ 8u
4
+ 3u
2
a
8
=
u
11
8u
9
22u
7
24u
5
9u
3
2u
u
13
9u
11
29u
9
40u
7
22u
5
3u
3
+ u
a
2
=
u
25
18u
23
+ ··· + 6u
3
+ u
u
25
+ 17u
23
+ ··· + 5u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes =
4u
28
4u
27
88u
26
84u
25
852u
24
772u
23
4776u
22
4080u
21
17160u
20
13704u
19
41328u
18
30524u
17
67796u
16
45664u
15
75468u
14
45464u
13
55764u
12
29136u
11
26120u
10
11080u
9
7012u
8
1872u
7
744u
6
+ 176u
5
+ 72u
4
+ 96u
3
+ 16u
2
+ 4u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
30
+ 15u
29
+ ··· + u + 1
c
2
, c
7
u
30
+ u
29
+ ··· + u + 1
c
3
u
30
u
29
+ ··· u + 13
c
4
, c
5
, c
6
c
9
, c
10
, c
11
c
12
u
30
+ u
29
+ ··· + u + 1
c
8
u
30
+ 3u
29
+ ··· + 39u + 21
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
30
+ y
29
+ ··· + 15y + 1
c
2
, c
7
y
30
15y
29
+ ··· y + 1
c
3
y
30
+ 9y
29
+ ··· 261y + 169
c
4
, c
5
, c
6
c
9
, c
10
, c
11
c
12
y
30
+ 45y
29
+ ··· y + 1
c
8
y
30
+ 13y
29
+ ··· + 2175y + 441
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.170414 + 0.834214I
5.24114 + 0.43257I 4.60975 + 0.66672I
u = 0.170414 0.834214I
5.24114 0.43257I 4.60975 0.66672I
u = 0.294203 + 0.768569I
3.91612 7.01709I 1.64398 + 8.27896I
u = 0.294203 0.768569I
3.91612 + 7.01709I 1.64398 8.27896I
u = 0.242623 + 0.722037I
1.51083 + 2.43874I 1.60861 4.80918I
u = 0.242623 0.722037I
1.51083 2.43874I 1.60861 + 4.80918I
u = 0.038851 + 1.290960I
6.26416 + 2.28369I 1.00616 3.59603I
u = 0.038851 1.290960I
6.26416 2.28369I 1.00616 + 3.59603I
u = 0.106749 + 1.375700I
8.52804 + 3.68968I 0. 2.69220I
u = 0.106749 1.375700I
8.52804 3.68968I 0. + 2.69220I
u = 0.132490 + 1.392830I
11.13310 8.56839I 3.01367 + 6.28743I
u = 0.132490 1.392830I
11.13310 + 8.56839I 3.01367 6.28743I
u = 0.07468 + 1.41582I
12.80400 0.46762I 5.38297 + 0.I
u = 0.07468 1.41582I
12.80400 + 0.46762I 5.38297 + 0.I
u = 0.212525 + 0.515943I
0.30214 + 1.56902I 3.13445 6.62609I
u = 0.212525 0.515943I
0.30214 1.56902I 3.13445 + 6.62609I
u = 0.343660 + 0.336994I
1.59918 + 2.04479I 1.77407 + 0.99321I
u = 0.343660 0.336994I
1.59918 2.04479I 1.77407 0.99321I
u = 0.431998 + 0.168856I
1.04292 4.61082I 4.50728 + 7.35119I
u = 0.431998 0.168856I
1.04292 + 4.61082I 4.50728 7.35119I
u = 0.364754 + 0.087964I
0.963752 + 0.420717I 10.43938 2.37744I
u = 0.364754 0.087964I
0.963752 0.420717I 10.43938 + 2.37744I
u = 0.00718 + 1.81845I
17.8624 + 2.4789I 0
u = 0.00718 1.81845I
17.8624 2.4789I 0
u = 0.02668 + 1.83606I
18.9070 + 4.3501I 0
u = 0.02668 1.83606I
18.9070 4.3501I 0
u = 0.03325 + 1.83999I
16.2143 9.3978I 0
u = 0.03325 1.83999I
16.2143 + 9.3978I 0
u = 0.01867 + 1.84515I
14.3797 0.9432I 0
u = 0.01867 1.84515I
14.3797 + 0.9432I 0
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
30
+ 15u
29
+ ··· + u + 1
c
2
, c
7
u
30
+ u
29
+ ··· + u + 1
c
3
u
30
u
29
+ ··· u + 13
c
4
, c
5
, c
6
c
9
, c
10
, c
11
c
12
u
30
+ u
29
+ ··· + u + 1
c
8
u
30
+ 3u
29
+ ··· + 39u + 21
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
30
+ y
29
+ ··· + 15y + 1
c
2
, c
7
y
30
15y
29
+ ··· y + 1
c
3
y
30
+ 9y
29
+ ··· 261y + 169
c
4
, c
5
, c
6
c
9
, c
10
, c
11
c
12
y
30
+ 45y
29
+ ··· y + 1
c
8
y
30
+ 13y
29
+ ··· + 2175y + 441
7