12a
0749
(K12a
0749
)
A knot diagram
1
Linearized knot diagam
3 8 10 9 11 12 2 1 4 7 6 5
Solving Sequence
3,10 4,8
2 1 7 11 9 5 12 6
c
3
c
2
c
1
c
7
c
10
c
9
c
4
c
12
c
6
c
5
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h1.15464 × 10
129
u
82
2.12036 × 10
129
u
81
+ ··· + 1.05249 × 10
130
b 2.56113 × 10
129
,
2.50662 × 10
130
u
82
+ 2.53263 × 10
130
u
81
+ ··· + 1.05249 × 10
130
a + 1.83078 × 10
131
,
u
83
u
82
+ ··· 16u + 1i
I
u
2
= ha
4
u a
3
u 4a
3
5a
2
u + 3a
2
+ 2au + b + 2a,
a
6
+ 6a
5
u a
5
5a
4
u 14a
4
16a
3
u + 8a
3
+ 4a
2
u + 10a
2
+ 4au + a + u, u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 95 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= h1.15 × 10
129
u
82
2.12 × 10
129
u
81
+ · · · + 1.05 × 10
130
b 2.56 ×
10
129
, 2.51 × 10
130
u
82
+ 2.53 × 10
130
u
81
+ · · · + 1.05 × 10
130
a + 1.83 ×
10
131
, u
83
u
82
+ · · · 16u + 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
8
=
2.38162u
82
2.40633u
81
+ ··· + 211.444u 17.3948
0.109706u
82
+ 0.201462u
81
+ ··· 12.5813u + 0.243341
a
2
=
2.02156u
82
1.83927u
81
+ ··· + 180.154u 20.2709
0.412232u
82
+ 0.394094u
81
+ ··· 14.9721u + 0.905614
a
1
=
1.60933u
82
1.44517u
81
+ ··· + 165.182u 19.3652
0.412232u
82
+ 0.394094u
81
+ ··· 14.9721u + 0.905614
a
7
=
0.793212u
82
0.884660u
81
+ ··· + 82.5878u + 3.62677
0.0517555u
82
+ 0.217321u
81
+ ··· + 5.93966u 1.53522
a
11
=
2.60524u
82
2.10688u
81
+ ··· + 230.248u 16.5091
0.204129u
82
+ 0.0772507u
81
+ ··· 9.17332u 0.257104
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
2u
2
a
12
=
2.04028u
82
1.82475u
81
+ ··· + 181.225u 20.1356
0.453441u
82
+ 0.484379u
81
+ ··· 15.0883u + 0.934102
a
6
=
3.21049u
82
3.23128u
81
+ ··· + 320.180u 24.9601
0.0333591u
82
+ 0.0548937u
81
+ ··· 18.6788u + 0.279037
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.292915u
82
0.00299820u
81
+ ··· 0.231972u + 11.2199
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
83
+ 43u
82
+ ··· + 210u + 25
c
2
, c
7
u
83
+ u
82
+ ··· + 21u
2
5
c
3
, c
4
, c
9
u
83
+ u
82
+ ··· 16u 1
c
5
, c
6
, c
11
u
83
+ u
82
+ ··· 10u 1
c
8
u
83
+ 3u
82
+ ··· + 21790u 3655
c
10
, c
12
u
83
3u
82
+ ··· + 4852u + 517
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
83
+ y
82
+ ··· + 4550y 625
c
2
, c
7
y
83
43y
82
+ ··· + 210y 25
c
3
, c
4
, c
9
y
83
+ 83y
82
+ ··· + 88y 1
c
5
, c
6
, c
11
y
83
69y
82
+ ··· + 44y 1
c
8
y
83
+ 41y
82
+ ··· + 762679210y 13359025
c
10
, c
12
y
83
+ 63y
82
+ ··· + 14835624y 267289
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.828176 + 0.557418I
a = 0.26185 1.69427I
b = 1.155510 + 0.462789I
2.43646 + 2.58116I 0
u = 0.828176 0.557418I
a = 0.26185 + 1.69427I
b = 1.155510 0.462789I
2.43646 2.58116I 0
u = 0.880668 + 0.478159I
a = 0.35382 1.77762I
b = 1.159560 + 0.498988I
5.82520 6.87062I 0
u = 0.880668 0.478159I
a = 0.35382 + 1.77762I
b = 1.159560 0.498988I
5.82520 + 6.87062I 0
u = 0.913983 + 0.416889I
a = 0.42302 1.83644I
b = 1.159300 + 0.525076I
1.42155 + 11.14220I 0
u = 0.913983 0.416889I
a = 0.42302 + 1.83644I
b = 1.159300 0.525076I
1.42155 11.14220I 0
u = 0.792210 + 0.634260I
a = 0.556105 0.320556I
b = 1.160410 + 0.345717I
2.67272 + 2.90389I 0
u = 0.792210 0.634260I
a = 0.556105 + 0.320556I
b = 1.160410 0.345717I
2.67272 2.90389I 0
u = 0.084056 + 1.041490I
a = 0.000756 1.089570I
b = 0.800253 + 0.494787I
1.54448 2.06060I 0
u = 0.084056 1.041490I
a = 0.000756 + 1.089570I
b = 0.800253 0.494787I
1.54448 + 2.06060I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.754065 + 0.726286I
a = 0.524056 0.394935I
b = 1.155730 + 0.389682I
6.60258 + 1.33321I 0
u = 0.754065 0.726286I
a = 0.524056 + 0.394935I
b = 1.155730 0.389682I
6.60258 1.33321I 0
u = 0.378493 + 1.015650I
a = 0.165756 1.219100I
b = 0.970336 + 0.171230I
0.90265 3.43454I 0
u = 0.378493 1.015650I
a = 0.165756 + 1.219100I
b = 0.970336 0.171230I
0.90265 + 3.43454I 0
u = 0.720759 + 0.819102I
a = 0.503846 0.474505I
b = 1.152480 + 0.431957I
2.66068 5.56325I 0
u = 0.720759 0.819102I
a = 0.503846 + 0.474505I
b = 1.152480 0.431957I
2.66068 + 5.56325I 0
u = 0.255809 + 1.067630I
a = 0.155725 1.352350I
b = 0.795173 + 0.055550I
3.85075 + 0.27233I 0
u = 0.255809 1.067630I
a = 0.155725 + 1.352350I
b = 0.795173 0.055550I
3.85075 0.27233I 0
u = 0.204373 + 1.083280I
a = 0.01086 1.54055I
b = 0.683616 0.078181I
0.80097 + 3.01593I 0
u = 0.204373 1.083280I
a = 0.01086 + 1.54055I
b = 0.683616 + 0.078181I
0.80097 3.01593I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.782147 + 0.421744I
a = 0.65089 1.35866I
b = 0.212910 + 0.749136I
1.33540 6.35685I 6.00000 + 5.58288I
u = 0.782147 0.421744I
a = 0.65089 + 1.35866I
b = 0.212910 0.749136I
1.33540 + 6.35685I 6.00000 5.58288I
u = 0.621544 + 0.602167I
a = 0.432472 1.247140I
b = 0.056022 + 0.667459I
0.62596 + 1.63981I 6.00000 + 0.I
u = 0.621544 0.602167I
a = 0.432472 + 1.247140I
b = 0.056022 0.667459I
0.62596 1.63981I 6.00000 + 0.I
u = 0.710823 + 0.487393I
a = 0.57026 1.29476I
b = 0.155215 + 0.709269I
2.94696 + 2.31361I 3.43042 3.33064I
u = 0.710823 0.487393I
a = 0.57026 + 1.29476I
b = 0.155215 0.709269I
2.94696 2.31361I 3.43042 + 3.33064I
u = 0.287984 + 1.116130I
a = 0.259716 0.868717I
b = 0.993147 + 0.583252I
1.74339 + 2.15963I 0
u = 0.287984 1.116130I
a = 0.259716 + 0.868717I
b = 0.993147 0.583252I
1.74339 2.15963I 0
u = 0.279482 + 1.139960I
a = 0.020964 1.246390I
b = 0.565039 + 0.608087I
2.98511 + 2.56133I 0
u = 0.279482 1.139960I
a = 0.020964 + 1.246390I
b = 0.565039 0.608087I
2.98511 2.56133I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.176144 + 1.296320I
a = 0.611233 0.029819I
b = 0.248951 0.649703I
1.94452 + 3.81460I 0
u = 0.176144 1.296320I
a = 0.611233 + 0.029819I
b = 0.248951 + 0.649703I
1.94452 3.81460I 0
u = 0.649068 + 0.077548I
a = 1.19948 1.21441I
b = 0.465751 + 0.631327I
6.17107 + 0.86345I 14.3969 0.7384I
u = 0.649068 0.077548I
a = 1.19948 + 1.21441I
b = 0.465751 0.631327I
6.17107 0.86345I 14.3969 + 0.7384I
u = 0.610090 + 0.179998I
a = 0.14723 2.51696I
b = 1.030630 + 0.544608I
4.53717 5.47882I 11.04158 + 6.52708I
u = 0.610090 0.179998I
a = 0.14723 + 2.51696I
b = 1.030630 0.544608I
4.53717 + 5.47882I 11.04158 6.52708I
u = 0.477840 + 0.410372I
a = 0.36614 1.97770I
b = 1.023630 + 0.465904I
0.86580 + 4.07227I 5.56865 9.23249I
u = 0.477840 0.410372I
a = 0.36614 + 1.97770I
b = 1.023630 0.465904I
0.86580 4.07227I 5.56865 + 9.23249I
u = 0.067862 + 1.384400I
a = 0.196273 + 0.154900I
b = 0.083261 0.720975I
3.97118 1.82061I 0
u = 0.067862 1.384400I
a = 0.196273 0.154900I
b = 0.083261 + 0.720975I
3.97118 + 1.82061I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.001191 + 1.386730I
a = 1.57028 + 0.32567I
b = 1.114940 0.388135I
1.50250 0.63171I 0
u = 0.001191 1.386730I
a = 1.57028 0.32567I
b = 1.114940 + 0.388135I
1.50250 + 0.63171I 0
u = 0.028734 + 1.407100I
a = 0.278899 1.167510I
b = 0.869859 + 0.754641I
1.95541 + 1.26508I 0
u = 0.028734 1.407100I
a = 0.278899 + 1.167510I
b = 0.869859 0.754641I
1.95541 1.26508I 0
u = 0.045458 + 1.407770I
a = 0.248108 1.206250I
b = 0.824993 + 0.766512I
5.76997 + 2.85289I 0
u = 0.045458 1.407770I
a = 0.248108 + 1.206250I
b = 0.824993 0.766512I
5.76997 2.85289I 0
u = 0.586055
a = 0.708998
b = 0.913508
1.91063 6.04100
u = 0.11242 + 1.41303I
a = 0.224623 1.243150I
b = 0.783760 + 0.782633I
1.69873 6.98576I 0
u = 0.11242 1.41303I
a = 0.224623 + 1.243150I
b = 0.783760 0.782633I
1.69873 + 6.98576I 0
u = 0.20015 + 1.40506I
a = 1.30473 + 1.45890I
b = 1.132050 0.511264I
0.59248 8.34419I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.20015 1.40506I
a = 1.30473 1.45890I
b = 1.132050 + 0.511264I
0.59248 + 8.34419I 0
u = 0.04676 + 1.47166I
a = 1.166650 + 0.648335I
b = 1.170280 0.419278I
7.49627 2.14085I 0
u = 0.04676 1.47166I
a = 1.166650 0.648335I
b = 1.170280 + 0.419278I
7.49627 + 2.14085I 0
u = 0.13948 + 1.47980I
a = 1.09205 + 1.05374I
b = 1.173810 0.475339I
7.09658 + 6.25907I 0
u = 0.13948 1.47980I
a = 1.09205 1.05374I
b = 1.173810 + 0.475339I
7.09658 6.25907I 0
u = 0.29281 + 1.49818I
a = 0.618256 + 0.621581I
b = 0.275741 0.898548I
4.88602 10.29530I 0
u = 0.29281 1.49818I
a = 0.618256 0.621581I
b = 0.275741 + 0.898548I
4.88602 + 10.29530I 0
u = 0.444092 + 0.145528I
a = 0.978477 0.640428I
b = 0.408435 + 0.412605I
0.852672 0.232931I 12.03073 + 2.51602I
u = 0.444092 0.145528I
a = 0.978477 + 0.640428I
b = 0.408435 0.412605I
0.852672 + 0.232931I 12.03073 2.51602I
u = 0.20380 + 1.52010I
a = 0.431672 + 0.572184I
b = 0.193463 0.891300I
6.27329 1.34438I 0
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.20380 1.52010I
a = 0.431672 0.572184I
b = 0.193463 + 0.891300I
6.27329 + 1.34438I 0
u = 0.25612 + 1.51278I
a = 0.537026 + 0.607048I
b = 0.240717 0.899184I
9.45956 + 5.87960I 0
u = 0.25612 1.51278I
a = 0.537026 0.607048I
b = 0.240717 + 0.899184I
9.45956 5.87960I 0
u = 0.34667 + 1.51698I
a = 0.59504 + 1.62681I
b = 1.193840 0.587206I
7.6640 + 15.7308I 0
u = 0.34667 1.51698I
a = 0.59504 1.62681I
b = 1.193840 + 0.587206I
7.6640 15.7308I 0
u = 0.023429 + 0.440080I
a = 0.993538 0.407074I
b = 0.936093 + 0.425987I
1.28387 1.68323I 3.77150 0.35257I
u = 0.023429 0.440080I
a = 0.993538 + 0.407074I
b = 0.936093 0.425987I
1.28387 + 1.68323I 3.77150 + 0.35257I
u = 0.399913 + 0.171939I
a = 2.65180 + 1.24043I
b = 0.711891 0.566818I
3.50631 5.22844I 11.78714 + 6.73129I
u = 0.399913 0.171939I
a = 2.65180 1.24043I
b = 0.711891 + 0.566818I
3.50631 + 5.22844I 11.78714 6.73129I
u = 0.31801 + 1.53692I
a = 0.61042 + 1.52370I
b = 1.204090 0.572653I
12.3754 11.2511I 0
11
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.31801 1.53692I
a = 0.61042 1.52370I
b = 1.204090 + 0.572653I
12.3754 + 11.2511I 0
u = 0.27270 + 1.55039I
a = 0.66002 + 1.38973I
b = 1.211490 0.549265I
9.35289 + 6.58290I 0
u = 0.27270 1.55039I
a = 0.66002 1.38973I
b = 1.211490 + 0.549265I
9.35289 6.58290I 0
u = 0.23240 + 1.57121I
a = 0.456742 0.075976I
b = 1.267760 0.252241I
9.99924 + 6.60552I 0
u = 0.23240 1.57121I
a = 0.456742 + 0.075976I
b = 1.267760 + 0.252241I
9.99924 6.60552I 0
u = 0.18866 + 1.59001I
a = 0.490949 + 0.040309I
b = 1.270750 0.282944I
14.4041 2.0103I 0
u = 0.18866 1.59001I
a = 0.490949 0.040309I
b = 1.270750 + 0.282944I
14.4041 + 2.0103I 0
u = 0.13358 + 1.59807I
a = 0.552059 + 0.174631I
b = 1.266410 0.318036I
10.97300 2.69837I 0
u = 0.13358 1.59807I
a = 0.552059 0.174631I
b = 1.266410 + 0.318036I
10.97300 + 2.69837I 0
u = 0.301350 + 0.041219I
a = 2.81466 0.24393I
b = 0.742127 0.477090I
0.90760 + 1.95680I 5.79568 4.89911I
12
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.301350 0.041219I
a = 2.81466 + 0.24393I
b = 0.742127 + 0.477090I
0.90760 1.95680I 5.79568 + 4.89911I
u = 0.0855141 + 0.0580346I
a = 1.99596 + 11.61360I
b = 0.878605 0.525027I
3.03134 + 0.82073I 11.47240 + 0.34762I
u = 0.0855141 0.0580346I
a = 1.99596 11.61360I
b = 0.878605 + 0.525027I
3.03134 0.82073I 11.47240 0.34762I
13
II. I
u
2
=
ha
4
ua
3
u4a
3
5a
2
u+3a
2
+2au+b+2a, 6a
5
u5a
4
u+· · ·+10a
2
+a, u
2
+1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
1
a
8
=
a
a
4
u + a
3
u + 4a
3
+ 5a
2
u 3a
2
2au 2a
a
2
=
a
5
u a
4
u 4a
4
5a
3
u + 3a
3
+ 2a
2
u + 2a
2
+ 1
a
4
4a
3
u + a
3
+ 3a
2
u + 5a
2
+ 2au 2a 1
a
1
=
a
5
u a
4
u 5a
4
9a
3
u + 4a
3
+ 5a
2
u + 7a
2
+ 2au 2a
a
4
4a
3
u + a
3
+ 3a
2
u + 5a
2
+ 2au 2a 1
a
7
=
a
5
5a
4
u + a
4
+ 4a
3
u + 9a
3
+ 7a
2
u 5a
2
2au 2a
a
4
u + a
3
u + 4a
3
+ 5a
2
u 3a
2
2au 2a u
a
11
=
a
3
u + 3a
2
+ 3au + u 1
a + 2u
a
9
=
u
0
a
5
=
0
1
a
12
=
a
5
u a
4
u 5a
4
9a
3
u + 4a
3
+ 5a
2
u + 7a
2
+ 2au 2a
a
5
u a
4
u 6a
4
13a
3
u + 5a
3
+ 8a
2
u + 12a
2
+ 4au 4a 1
a
6
=
a
5
5a
4
u + a
4
+ 4a
3
u + 10a
3
+ 10a
2
u 5a
2
2au 5a u
a
4
u + 5a
3
+ 9a
2
u + au 7a 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a
5
20a
4
u + 8a
4
+ 32a
3
u + 32a
3
+ 16a
2
u 40a
2
16au + 4
14
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
6
c
2
, c
7
, c
8
(u
4
u
2
+ 1)
3
c
3
, c
4
, c
9
(u
2
+ 1)
6
c
5
, c
6
, c
11
(u
6
3u
4
+ 2u
2
+ 1)
2
c
10
, c
12
(u
6
+ u
4
+ 2u
2
+ 1)
2
15
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
6
c
2
, c
7
, c
8
(y
2
y + 1)
6
c
3
, c
4
, c
9
(y + 1)
12
c
5
, c
6
, c
11
(y
3
3y
2
+ 2y + 1)
4
c
10
, c
12
(y
3
+ y
2
+ 2y + 1)
4
16
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.083790 0.612547I
b = 0.866025 + 0.500000I
1.37919 + 0.79824I 5.50976 + 0.48465I
u = 1.000000I
a = 0.377439 0.346257I
b = 0.866025 + 0.500000I
2.75839 + 2.02988I 1.01951 3.46410I
u = 1.000000I
a = 0.37744 1.65374I
b = 0.866025 + 0.500000I
2.75839 2.02988I 1.01951 + 3.46410I
u = 1.000000I
a = 0.206350 + 0.132315I
b = 0.866025 + 0.500000I
1.37919 4.85801I 5.50976 + 6.44355I
u = 1.000000I
a = 1.08379 1.38745I
b = 0.866025 + 0.500000I
1.37919 0.79824I 5.50976 0.48465I
u = 1.000000I
a = 0.20635 2.13232I
b = 0.866025 + 0.500000I
1.37919 + 4.85801I 5.50976 6.44355I
u = 1.000000I
a = 1.083790 + 0.612547I
b = 0.866025 0.500000I
1.37919 0.79824I 5.50976 0.48465I
u = 1.000000I
a = 0.377439 + 0.346257I
b = 0.866025 0.500000I
2.75839 2.02988I 1.01951 + 3.46410I
u = 1.000000I
a = 0.37744 + 1.65374I
b = 0.866025 0.500000I
2.75839 + 2.02988I 1.01951 3.46410I
u = 1.000000I
a = 0.206350 0.132315I
b = 0.866025 0.500000I
1.37919 + 4.85801I 5.50976 6.44355I
17
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.08379 + 1.38745I
b = 0.866025 0.500000I
1.37919 + 0.79824I 5.50976 + 0.48465I
u = 1.000000I
a = 0.20635 + 2.13232I
b = 0.866025 0.500000I
1.37919 4.85801I 5.50976 + 6.44355I
18
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
6
)(u
83
+ 43u
82
+ ··· + 210u + 25)
c
2
, c
7
((u
4
u
2
+ 1)
3
)(u
83
+ u
82
+ ··· + 21u
2
5)
c
3
, c
4
, c
9
((u
2
+ 1)
6
)(u
83
+ u
82
+ ··· 16u 1)
c
5
, c
6
, c
11
((u
6
3u
4
+ 2u
2
+ 1)
2
)(u
83
+ u
82
+ ··· 10u 1)
c
8
((u
4
u
2
+ 1)
3
)(u
83
+ 3u
82
+ ··· + 21790u 3655)
c
10
, c
12
((u
6
+ u
4
+ 2u
2
+ 1)
2
)(u
83
3u
82
+ ··· + 4852u + 517)
19
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
6
)(y
83
+ y
82
+ ··· + 4550y 625)
c
2
, c
7
((y
2
y + 1)
6
)(y
83
43y
82
+ ··· + 210y 25)
c
3
, c
4
, c
9
((y + 1)
12
)(y
83
+ 83y
82
+ ··· + 88y 1)
c
5
, c
6
, c
11
((y
3
3y
2
+ 2y + 1)
4
)(y
83
69y
82
+ ··· + 44y 1)
c
8
((y
2
y + 1)
6
)(y
83
+ 41y
82
+ ··· + 7.62679 × 10
8
y 1.33590 × 10
7
)
c
10
, c
12
((y
3
+ y
2
+ 2y + 1)
4
)(y
83
+ 63y
82
+ ··· + 1.48356 × 10
7
y 267289)
20