I
u
11
= h−u
3
+ u
2
+ d − u + 2, u
3
+ c + 2u − 1, b − 1, u
3
+ a + 2u − 1, u
4
− u
3
+ 2u
2
− 2u + 1i
I
u
12
= h−u
3
+ u
2
+ d − u + 2, u
3
+ c + 2u − 1, 2u
3
− 2u
2
+ b + 2u, 2u
3
− 2u
2
+ a + 2u − 1, u
4
− u
3
+ 2u
2
− 2u + 1i
I
u
13
= hu
3
+ d + u, −u
3
+ c − 2u, b − 1, u
3
+ a + 2u − 1, u
4
− u
3
+ 2u
2
− 2u + 1i
I
u
14
= hau + d + a − u, c + a − 1, b − 1, a
2
− a + u + 1, u
2
+ u + 1i
I
u
15
= hd + 1, c − u, b + u − 1, a + u, u
2
+ 1i
I
u
16
= hd, c − 1, b − u − 1, a − u, u
2
+ 1i
I
u
17
= hd + 1, c + u, b − 1, a − 1, u
2
+ 1i
I
u
18
= hd + 1, ca + u − 1, b − a − 1, u
2
+ 1i
I
v
1
= ha, d + 1, c + a − v −2, b −1, v
2
+ 1i
* 18 irreducible components of dim
C
= 0, with total 87 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2