12a
0750
(K12a
0750
)
A knot diagram
1
Linearized knot diagam
3 8 10 9 11 1 12 2 4 6 5 7
Solving Sequence
6,11
5
7,12
8 1
4,10
3 2 9
c
5
c
11
c
7
c
12
c
10
c
3
c
2
c
9
c
1
, c
4
, c
6
, c
8
Ideals for irreducible components
2
of X
par
I
u
1
= h−u
2
+ d, u
9
+ 2u
8
7u
7
+ 12u
6
18u
5
+ 23u
4
17u
3
+ 10u
2
+ 4c u 3,
u
9
+ 2u
8
7u
7
+ 12u
6
18u
5
+ 23u
4
17u
3
+ 10u
2
+ 4b u + 1,
u
9
+ 2u
8
7u
7
+ 12u
6
18u
5
+ 23u
4
17u
3
+ 10u
2
+ 4a u 3,
u
10
u
9
+ 7u
8
7u
7
+ 18u
6
17u
5
+ 18u
4
15u
3
+ 3u
2
+ 1i
I
u
2
= h−u
2
+ d, u
6
+ 2u
5
+ 5u
4
+ 6u
3
+ 5u
2
+ c + 3u + 1, b 1, u
7
2u
6
6u
5
6u
4
8u
3
3u
2
+ 2a u 1,
u
8
+ 2u
7
+ 6u
6
+ 8u
5
+ 10u
4
+ 9u
3
+ 5u
2
+ 3u + 2i
I
u
3
= h−u
6
u
5
3u
4
2u
3
u
2
+ d u + 1, u
7
2u
6
6u
5
6u
4
8u
3
3u
2
+ 2c u 1,
u
6
+ 2u
5
+ 5u
4
+ 6u
3
+ 5u
2
+ b + 3u + 2, u
6
+ 2u
5
+ 5u
4
+ 6u
3
+ 5u
2
+ a + 3u + 1,
u
8
+ 2u
7
+ 6u
6
+ 8u
5
+ 10u
4
+ 9u
3
+ 5u
2
+ 3u + 2i
I
u
4
= h−u
6
2u
4
+ u
3
+ 2d + 2u + 2, u
7
u
6
+ 3u
5
u
4
+ 3u
3
u
2
+ 4c + 2u 4, b 1,
u
7
u
6
+ 3u
5
u
4
+ 3u
3
u
2
+ 4a + 2u 4, u
8
u
7
+ 3u
6
3u
5
+ 3u
4
5u
3
+ 4u
2
4u + 4i
I
u
5
= h−u
2
+ d, u
2
+ c + u, b 1, a
2
+ 2u
2
a u + 5, u
3
+ 2u + 1i
I
u
6
= hu
2
c + d + 1, c
2
+ 2u
2
c u + 5, u
2
+ b + u + 1, u
2
+ a + u, u
3
+ 2u + 1i
I
u
7
= h−u
4
+ d u + 1, u
5
u
3
+ 2c u 1, b 1, u
5
u
3
+ 2a u 1, u
6
+ u
4
+ 2u
3
+ u
2
+ u + 2i
I
u
8
= h−u
2
+ d, u
2
+ c + u, u
2
+ b + u + 1, u
2
+ a + u, u
3
+ 2u + 1i
I
u
9
= h−u
2
+ d, 2u
3
2u
2
+ c + 2u 1, b 1, u
3
+ a + 2u 1, u
4
u
3
+ 2u
2
2u + 1i
I
u
10
= h−u
3
+ u
2
+ d u + 2, u
3
+ c + 2u 1, b 1, u
3
+ a 2u, u
4
u
3
+ 2u
2
2u + 1i
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
1
I
u
11
= h−u
3
+ u
2
+ d u + 2, u
3
+ c + 2u 1, b 1, u
3
+ a + 2u 1, u
4
u
3
+ 2u
2
2u + 1i
I
u
12
= h−u
3
+ u
2
+ d u + 2, u
3
+ c + 2u 1, 2u
3
2u
2
+ b + 2u, 2u
3
2u
2
+ a + 2u 1, u
4
u
3
+ 2u
2
2u + 1i
I
u
13
= hu
3
+ d + u, u
3
+ c 2u, b 1, u
3
+ a + 2u 1, u
4
u
3
+ 2u
2
2u + 1i
I
u
14
= hau + d + a u, c + a 1, b 1, a
2
a + u + 1, u
2
+ u + 1i
I
u
15
= hd + 1, c u, b + u 1, a + u, u
2
+ 1i
I
u
16
= hd, c 1, b u 1, a u, u
2
+ 1i
I
u
17
= hd + 1, c + u, b 1, a 1, u
2
+ 1i
I
u
18
= hd + 1, ca + u 1, b a 1, u
2
+ 1i
I
v
1
= ha, d + 1, c + a v 2, b 1, v
2
+ 1i
* 18 irreducible components of dim
C
= 0, with total 87 representations.
* 1 irreducible components of dim
C
= 1
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
2
I. I
u
1
= h−u
2
+ d, u
9
+ 2u
8
+ · · · + 4c 3, u
9
+ 2u
8
+ · · · + 4b + 1, u
9
+
2u
8
+ · · · + 4a 3, u
10
u
9
+ · · · + 3u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
1
4
u
9
1
2
u
8
+ ··· +
1
4
u +
3
4
u
2
a
12
=
u
u
3
+ u
a
8
=
1
4
u
9
1
2
u
8
+ ··· +
1
4
u +
3
4
u
4
+ 2u
2
a
1
=
1
4
u
9
+
5
4
u
7
+ ···
7
4
u +
1
4
u
a
4
=
1
4
u
9
1
2
u
8
+ ··· +
1
4
u +
3
4
1
4
u
9
1
2
u
8
+ ··· +
1
4
u
1
4
a
10
=
u
u
a
3
=
1
4
u
9
1
2
u
8
+ ··· +
1
4
u +
3
4
1
4
u
9
1
2
u
8
+ ··· +
1
4
u
1
4
a
2
=
u
3
2u + 1
1
4
u
9
7
4
u
7
+ ··· +
5
4
u +
1
4
a
9
=
1
4
u
9
5
4
u
7
+ ··· +
7
4
u
1
4
1
4
u
9
5
4
u
7
+ ··· +
3
4
u
1
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 3u
8
u
7
+ 18u
6
8u
5
+ 36u
4
19u
3
+ 20u
2
16u 11
3
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
10
+ 3u
9
+ 8u
8
+ 10u
7
+ 14u
6
+ 8u
5
+ 5u
4
+ 15u
3
+ 48u
2
+ 48u + 16
c
2
, c
8
u
10
u
9
+ 2u
8
2u
7
+ 4u
6
6u
5
+ 5u
4
7u
3
+ 8u
2
4u + 4
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
u
10
u
9
+ 7u
8
7u
7
+ 18u
6
17u
5
+ 18u
4
15u
3
+ 3u
2
+ 1
4
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
10
+ 7y
9
+ ··· 768y + 256
c
2
, c
8
y
10
+ 3y
9
+ 8y
8
+ 10y
7
+ 14y
6
+ 8y
5
+ 5y
4
+ 15y
3
+ 48y
2
+ 48y + 16
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y
10
+ 13y
9
+ ··· + 6y + 1
5
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.679448 + 0.180150I
a = 0.359501 0.232867I
b = 0.640499 0.232867I
c = 0.359501 0.232867I
d = 0.429196 + 0.244805I
3.36992 3.42590I 13.9202 + 5.8734I
u = 0.679448 0.180150I
a = 0.359501 + 0.232867I
b = 0.640499 + 0.232867I
c = 0.359501 + 0.232867I
d = 0.429196 0.244805I
3.36992 + 3.42590I 13.9202 5.8734I
u = 0.40586 + 1.47601I
a = 1.82314 0.97271I
b = 2.82314 0.97271I
c = 1.82314 0.97271I
d = 2.01389 + 1.19812I
12.8882 16.0216I 1.20715 + 8.19647I
u = 0.40586 1.47601I
a = 1.82314 + 0.97271I
b = 2.82314 + 0.97271I
c = 1.82314 + 0.97271I
d = 2.01389 1.19812I
12.8882 + 16.0216I 1.20715 8.19647I
u = 0.34141 + 1.51774I
a = 1.95611 + 0.83479I
b = 2.95611 + 0.83479I
c = 1.95611 + 0.83479I
d = 2.18697 1.03634I
15.7344 + 9.7447I 1.47516 4.40501I
u = 0.34141 1.51774I
a = 1.95611 0.83479I
b = 2.95611 0.83479I
c = 1.95611 0.83479I
d = 2.18697 + 1.03634I
15.7344 9.7447I 1.47516 + 4.40501I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.05876 + 1.63300I
a = 2.18667 + 0.13692I
b = 3.18667 + 0.13692I
c = 2.18667 + 0.13692I
d = 2.66324 0.19191I
19.6670 + 3.4566I 2.19060 2.42157I
u = 0.05876 1.63300I
a = 2.18667 0.13692I
b = 3.18667 0.13692I
c = 2.18667 0.13692I
d = 2.66324 + 0.19191I
19.6670 3.4566I 2.19060 + 2.42157I
u = 0.185141 + 0.315240I
a = 1.106430 + 0.262999I
b = 0.106427 + 0.262999I
c = 1.106430 + 0.262999I
d = 0.0650991 0.1167280I
0.650910 + 0.940213I 10.53842 6.80546I
u = 0.185141 0.315240I
a = 1.106430 0.262999I
b = 0.106427 0.262999I
c = 1.106430 0.262999I
d = 0.0650991 + 0.1167280I
0.650910 0.940213I 10.53842 + 6.80546I
7
II. I
u
2
= h−u
2
+ d, u
6
+ 2u
5
+ · · · + c + 1, b 1, u
7
2u
6
+ · · · + 2a
1, u
8
+ 2u
7
+ · · · + 3u + 2i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
u
6
2u
5
5u
4
6u
3
5u
2
3u 1
u
2
a
12
=
u
u
3
+ u
a
8
=
u
6
2u
5
5u
4
6u
3
6u
2
3u 1
u
4
+ 2u
2
a
1
=
u
7
+ 2u
6
+ 5u
5
+ 6u
4
+ 5u
3
+ 3u
2
u
a
4
=
1
2
u
7
+ u
6
+ ··· +
1
2
u +
1
2
1
a
10
=
u
u
a
3
=
1
2
u
7
+ 2u
6
+ ··· +
3
2
u +
1
2
u
6
+ u
5
+ 3u
4
+ 2u
3
+ 2u
2
+ u + 1
a
2
=
1
2
u
7
+ u
6
+ ···
3
2
u
1
2
u
7
u
6
4u
5
3u
4
4u
3
2u
2
1
a
9
=
1
2
u
7
+ u
6
+ ··· +
5
2
u +
3
2
u
5
u
4
3u
3
2u
2
u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
2u
6
12u
5
2u
4
4u
3
+ 2u
2
+ 6u 2
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 3u
7
+ 8u
6
+ 10u
5
+ 14u
4
+ 11u
3
+ 12u
2
+ 4u + 1
c
2
, c
8
u
8
u
7
+ 2u
6
2u
5
+ 4u
4
3u
3
+ 2u
2
+ 1
c
3
, c
4
, c
9
u
8
u
7
+ 3u
6
3u
5
+ 3u
4
5u
3
+ 4u
2
4u + 4
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
8
+ 2u
7
+ 6u
6
+ 8u
5
+ 10u
4
+ 9u
3
+ 5u
2
+ 3u + 2
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
+ 7y
7
+ 32y
6
+ 82y
5
+ 146y
4
+ 151y
3
+ 84y
2
+ 8y + 1
c
2
, c
8
y
8
+ 3y
7
+ 8y
6
+ 10y
5
+ 14y
4
+ 11y
3
+ 12y
2
+ 4y + 1
c
3
, c
4
, c
9
y
8
+ 5y
7
+ 9y
6
+ 7y
5
+ 3y
4
y
3
+ 16y + 16
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
8
+ 8y
7
+ 24y
6
+ 30y
5
+ 8y
4
5y
3
+ 11y
2
+ 11y + 4
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.832019 + 0.315048I
a = 0.187629 + 1.339450I
b = 1.00000
c = 0.132804 + 0.372803I
d = 0.593000 0.524253I
1.55583 + 6.79402I 7.11839 7.09473I
u = 0.832019 0.315048I
a = 0.187629 1.339450I
b = 1.00000
c = 0.132804 0.372803I
d = 0.593000 + 0.524253I
1.55583 6.79402I 7.11839 + 7.09473I
u = 0.251759 + 0.670878I
a = 0.545199 0.612937I
b = 1.00000
c = 1.50200 1.37807I
d = 0.386695 + 0.337799I
3.51088 1.27680I 2.16898 + 5.88514I
u = 0.251759 0.670878I
a = 0.545199 + 0.612937I
b = 1.00000
c = 1.50200 + 1.37807I
d = 0.386695 0.337799I
3.51088 + 1.27680I 2.16898 5.88514I
u = 0.09342 + 1.48598I
a = 0.448861 + 0.552340I
b = 1.00000
c = 2.58269 + 0.36635I
d = 2.19941 0.27763I
10.73060 0.66722I 0.81639 + 2.10627I
u = 0.09342 1.48598I
a = 0.448861 0.552340I
b = 1.00000
c = 2.58269 0.36635I
d = 2.19941 + 0.27763I
10.73060 + 0.66722I 0.81639 2.10627I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.32632 + 1.45375I
a = 0.658708 0.606572I
b = 1.00000
c = 2.05212 + 0.99140I
d = 2.00689 0.94878I
7.23180 + 10.98940I 3.52901 7.14773I
u = 0.32632 1.45375I
a = 0.658708 + 0.606572I
b = 1.00000
c = 2.05212 0.99140I
d = 2.00689 + 0.94878I
7.23180 10.98940I 3.52901 + 7.14773I
12
III. I
u
3
= h−u
6
u
5
+ · · · + d + 1, u
7
2u
6
+ · · · + 2c 1, u
6
+ 2u
5
+ · · · +
b + 2, u
6
+ 2u
5
+ · · · + a + 1, u
8
+ 2u
7
+ · · · + 3u + 2i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
1
2
u
7
+ u
6
+ ··· +
1
2
u +
1
2
u
6
+ u
5
+ 3u
4
+ 2u
3
+ u
2
+ u 1
a
12
=
u
u
3
+ u
a
8
=
1
2
u
7
+ 2u
6
+ ··· +
3
2
u +
1
2
u
7
+ 3u
6
+ 6u
5
+ 8u
4
+ 8u
3
+ 4u
2
+ 3u + 1
a
1
=
1
2
u
7
u
6
+ ···
5
2
u
3
2
u
5
u
4
3u
3
2u
2
2u 1
a
4
=
u
6
2u
5
5u
4
6u
3
5u
2
3u 1
u
6
2u
5
5u
4
6u
3
5u
2
3u 2
a
10
=
u
u
a
3
=
u
6
2u
5
5u
4
6u
3
6u
2
3u 1
u
6
2u
5
5u
4
6u
3
6u
2
3u 2
a
2
=
1
2
u
7
2u
4
+ ···
3
2
u
1
2
u
7
+ u
5
2u
4
3u
3
3u
2
2u 1
a
9
=
u
7
2u
6
5u
5
6u
4
5u
3
3u
2
u
7
2u
6
5u
5
6u
4
5u
3
3u
2
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
7
2u
6
12u
5
2u
4
4u
3
+ 2u
2
+ 6u 2
13
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 3u
7
+ 8u
6
+ 10u
5
+ 14u
4
+ 11u
3
+ 12u
2
+ 4u + 1
c
2
, c
8
u
8
u
7
+ 2u
6
2u
5
+ 4u
4
3u
3
+ 2u
2
+ 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
8
+ 2u
7
+ 6u
6
+ 8u
5
+ 10u
4
+ 9u
3
+ 5u
2
+ 3u + 2
c
6
, c
7
, c
12
u
8
u
7
+ 3u
6
3u
5
+ 3u
4
5u
3
+ 4u
2
4u + 4
14
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
+ 7y
7
+ 32y
6
+ 82y
5
+ 146y
4
+ 151y
3
+ 84y
2
+ 8y + 1
c
2
, c
8
y
8
+ 3y
7
+ 8y
6
+ 10y
5
+ 14y
4
+ 11y
3
+ 12y
2
+ 4y + 1
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
8
+ 8y
7
+ 24y
6
+ 30y
5
+ 8y
4
5y
3
+ 11y
2
+ 11y + 4
c
6
, c
7
, c
12
y
8
+ 5y
7
+ 9y
6
+ 7y
5
+ 3y
4
y
3
+ 16y + 16
15
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.832019 + 0.315048I
a = 0.132804 + 0.372803I
b = 0.867196 + 0.372803I
c = 0.187629 + 1.339450I
d = 1.81347 0.69593I
1.55583 + 6.79402I 7.11839 7.09473I
u = 0.832019 0.315048I
a = 0.132804 0.372803I
b = 0.867196 0.372803I
c = 0.187629 1.339450I
d = 1.81347 + 0.69593I
1.55583 6.79402I 7.11839 + 7.09473I
u = 0.251759 + 0.670878I
a = 1.50200 1.37807I
b = 0.50200 1.37807I
c = 0.545199 0.612937I
d = 1.41788 0.05285I
3.51088 1.27680I 2.16898 + 5.88514I
u = 0.251759 0.670878I
a = 1.50200 + 1.37807I
b = 0.50200 + 1.37807I
c = 0.545199 + 0.612937I
d = 1.41788 + 0.05285I
3.51088 + 1.27680I 2.16898 5.88514I
u = 0.09342 + 1.48598I
a = 2.58269 + 0.36635I
b = 3.58269 + 0.36635I
c = 0.448861 + 0.552340I
d = 0.166115 + 1.339440I
10.73060 0.66722I 0.81639 + 2.10627I
u = 0.09342 1.48598I
a = 2.58269 0.36635I
b = 3.58269 0.36635I
c = 0.448861 0.552340I
d = 0.166115 1.339440I
10.73060 + 0.66722I 0.81639 2.10627I
16
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.32632 + 1.45375I
a = 2.05212 + 0.99140I
b = 3.05212 + 0.99140I
c = 0.658708 0.606572I
d = 0.897463 0.592355I
7.23180 + 10.98940I 3.52901 7.14773I
u = 0.32632 1.45375I
a = 2.05212 0.99140I
b = 3.05212 0.99140I
c = 0.658708 + 0.606572I
d = 0.897463 + 0.592355I
7.23180 10.98940I 3.52901 + 7.14773I
17
IV. I
u
4
= h−u
6
2u
4
+ · · · + 2d + 2, u
7
u
6
+ · · · + 4c 4, b 1, u
7
u
6
+
· · · + 4a 4, u
8
u
7
+ · · · 4u + 4i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
1
4
u
7
+
1
4
u
6
+ ···
1
2
u + 1
1
2
u
6
+ u
4
1
2
u
3
u 1
a
12
=
u
u
3
+ u
a
8
=
1
4
u
7
+
3
4
u
6
+ ···
3
2
u + 1
1
2
u
7
+
1
2
u
6
+ ··· 2u + 1
a
1
=
1
4
u
7
+
1
4
u
6
+ ··· u + 1
1
2
u
5
u
3
+
1
2
u
2
u + 1
a
4
=
1
4
u
7
+
1
4
u
6
+ ···
1
2
u + 1
1
a
10
=
u
u
a
3
=
1
4
u
7
+
3
4
u
6
+ ···
3
2
u + 1
1
2
u
6
+ u
4
1
2
u
3
+ u
2
u + 1
a
2
=
1
2
u
6
1
2
u
5
+ ···
1
2
u + 1
1
2
u
7
+
1
2
u
6
+ ···
1
2
u
2
u
a
9
=
1
4
u
7
1
4
u
6
+ ··· + u 1
1
2
u
5
u
3
+
1
2
u
2
+ 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = u
7
+ 3u
6
+ u
5
+ 3u
4
u
3
+ u
2
6u + 2
18
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
8
+ 3u
7
+ 8u
6
+ 10u
5
+ 14u
4
+ 11u
3
+ 12u
2
+ 4u + 1
c
2
, c
8
u
8
u
7
+ 2u
6
2u
5
+ 4u
4
3u
3
+ 2u
2
+ 1
c
3
, c
4
, c
6
c
7
, c
9
, c
12
u
8
+ 2u
7
+ 6u
6
+ 8u
5
+ 10u
4
+ 9u
3
+ 5u
2
+ 3u + 2
c
5
, c
10
, c
11
u
8
u
7
+ 3u
6
3u
5
+ 3u
4
5u
3
+ 4u
2
4u + 4
19
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
8
+ 7y
7
+ 32y
6
+ 82y
5
+ 146y
4
+ 151y
3
+ 84y
2
+ 8y + 1
c
2
, c
8
y
8
+ 3y
7
+ 8y
6
+ 10y
5
+ 14y
4
+ 11y
3
+ 12y
2
+ 4y + 1
c
3
, c
4
, c
6
c
7
, c
9
, c
12
y
8
+ 8y
7
+ 24y
6
+ 30y
5
+ 8y
4
5y
3
+ 11y
2
+ 11y + 4
c
5
, c
10
, c
11
y
8
+ 5y
7
+ 9y
6
+ 7y
5
+ 3y
4
y
3
+ 16y + 16
20
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.993174 + 0.298213I
a = 0.295449 1.252190I
b = 1.00000
c = 0.295449 1.252190I
d = 2.00689 + 0.94878I
7.23180 10.98940I 3.52901 + 7.14773I
u = 0.993174 0.298213I
a = 0.295449 + 1.252190I
b = 1.00000
c = 0.295449 + 1.252190I
d = 2.00689 0.94878I
7.23180 + 10.98940I 3.52901 7.14773I
u = 0.769280 + 0.870579I
a = 0.094762 + 0.907210I
b = 1.00000
c = 0.094762 + 0.907210I
d = 2.19941 + 0.27763I
10.73060 + 0.66722I 0.81639 2.10627I
u = 0.769280 0.870579I
a = 0.094762 0.907210I
b = 1.00000
c = 0.094762 0.907210I
d = 2.19941 0.27763I
10.73060 0.66722I 0.81639 + 2.10627I
u = 0.022189 + 1.190950I
a = 0.440820 0.221811I
b = 1.00000
c = 0.440820 0.221811I
d = 0.386695 0.337799I
3.51088 + 1.27680I 2.16898 5.88514I
u = 0.022189 1.190950I
a = 0.440820 + 0.221811I
b = 1.00000
c = 0.440820 + 0.221811I
d = 0.386695 + 0.337799I
3.51088 1.27680I 2.16898 + 5.88514I
21
Solutions to I
u
4
1(vol +
1CS) Cusp shape
u = 0.253917 + 1.370380I
a = 0.668969 + 0.545807I
b = 1.00000
c = 0.668969 + 0.545807I
d = 0.593000 + 0.524253I
1.55583 6.79402I 7.11839 + 7.09473I
u = 0.253917 1.370380I
a = 0.668969 0.545807I
b = 1.00000
c = 0.668969 0.545807I
d = 0.593000 0.524253I
1.55583 + 6.79402I 7.11839 7.09473I
22
V. I
u
5
= h−u
2
+ d, u
2
+ c + u, b 1, a
2
+ 2u
2
a u + 5, u
3
+ 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
u
2
u
u
2
a
12
=
u
u 1
a
8
=
u
u
a
1
=
u
2
+ u + 1
u
a
4
=
a
1
a
10
=
u
u
a
3
=
u
2
a + u
2
+ a
u
2
a + u
2
+ 1
a
2
=
a
1
a
9
=
u
2
+ 2
au
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4u 10
23
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ u
2
+ 3u + 4
c
2
, c
3
, c
4
c
8
, c
9
u
6
+ u
4
+ 2u
3
+ u
2
+ u + 2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(u
3
+ 2u + 1)
2
24
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
+ 2y
5
+ 3y
4
2y
3
+ 13y
2
y + 16
c
2
, c
3
, c
4
c
8
, c
9
y
6
+ 2y
5
+ 3y
4
+ 2y
3
+ y
2
+ 3y + 4
c
5
, c
6
, c
7
c
10
, c
11
, c
12
(y
3
+ 4y
2
+ 4y 1)
2
25
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
5
1(vol +
1CS) Cusp shape
u = 0.22670 + 1.46771I
a = 0.618738 + 0.576047I
b = 1.00000
c = 2.32948 0.80225I
d = 2.10278 + 0.66546I
9.44074 5.13794I 0.68207 + 3.20902I
u = 0.22670 + 1.46771I
a = 0.381262 0.576047I
b = 1.00000
c = 2.32948 0.80225I
d = 2.10278 + 0.66546I
9.44074 5.13794I 0.68207 + 3.20902I
u = 0.22670 1.46771I
a = 0.618738 0.576047I
b = 1.00000
c = 2.32948 + 0.80225I
d = 2.10278 0.66546I
9.44074 + 5.13794I 0.68207 3.20902I
u = 0.22670 1.46771I
a = 0.381262 + 0.576047I
b = 1.00000
c = 2.32948 + 0.80225I
d = 2.10278 0.66546I
9.44074 + 5.13794I 0.68207 3.20902I
u = 0.453398
a = 0.50000 + 2.36950I
b = 1.00000
c = 0.658967
d = 0.205569
0.787199 12.6360
u = 0.453398
a = 0.50000 2.36950I
b = 1.00000
c = 0.658967
d = 0.205569
0.787199 12.6360
26
VI.
I
u
6
= hu
2
c+d+1, c
2
+2u
2
cu+5, u
2
+b+u+1, u
2
+a+u, u
3
+2u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
c
u
2
c 1
a
12
=
u
u 1
a
8
=
u
2
c + u
2
+ c
2u
2
c cu + u
2
+ u 1
a
1
=
u
2
2
cu u
a
4
=
u
2
u
u
2
u 1
a
10
=
u
u
a
3
=
u
u 1
a
2
=
2cu u
2
+ c u 2
u
2
c + 3cu + c 2u 1
a
9
=
u
2
u 1
u
2
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4u 10
27
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ u
2
+ 3u + 4
c
2
, c
6
, c
7
c
8
, c
12
u
6
+ u
4
+ 2u
3
+ u
2
+ u + 2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(u
3
+ 2u + 1)
2
28
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
+ 2y
5
+ 3y
4
2y
3
+ 13y
2
y + 16
c
2
, c
6
, c
7
c
8
, c
12
y
6
+ 2y
5
+ 3y
4
+ 2y
3
+ y
2
+ 3y + 4
c
3
, c
4
, c
5
c
9
, c
10
, c
11
(y
3
+ 4y
2
+ 4y 1)
2
29
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
6
1(vol +
1CS) Cusp shape
u = 0.22670 + 1.46771I
a = 2.32948 0.80225I
b = 3.32948 0.80225I
c = 0.618738 + 0.576047I
d = 0.684408 + 0.799560I
9.44074 5.13794I 0.68207 + 3.20902I
u = 0.22670 + 1.46771I
a = 2.32948 0.80225I
b = 3.32948 0.80225I
c = 0.381262 0.576047I
d = 0.58162 1.46502I
9.44074 5.13794I 0.68207 + 3.20902I
u = 0.22670 1.46771I
a = 2.32948 + 0.80225I
b = 3.32948 + 0.80225I
c = 0.618738 0.576047I
d = 0.684408 0.799560I
9.44074 + 5.13794I 0.68207 3.20902I
u = 0.22670 1.46771I
a = 2.32948 + 0.80225I
b = 3.32948 + 0.80225I
c = 0.381262 + 0.576047I
d = 0.58162 + 1.46502I
9.44074 + 5.13794I 0.68207 3.20902I
u = 0.453398
a = 0.658967
b = 0.341033
c = 0.50000 + 2.36950I
d = 1.102790 0.487097I
0.787199 12.6360
u = 0.453398
a = 0.658967
b = 0.341033
c = 0.50000 2.36950I
d = 1.102790 + 0.487097I
0.787199 12.6360
30
VII. I
u
7
= h−u
4
+ d u + 1, u
5
u
3
+ 2c u 1, b 1, u
5
u
3
+ 2a
u 1, u
6
+ u
4
+ 2u
3
+ u
2
+ u + 2i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
1
2
u
5
+
1
2
u
3
+
1
2
u +
1
2
u
4
+ u 1
a
12
=
u
u
3
+ u
a
8
=
1
2
u
5
+ u
4
+ ··· +
3
2
u +
1
2
u
3
+ u + 1
a
1
=
1
2
u
5
1
2
u
3
u
2
1
2
u
1
2
u
3
u 1
a
4
=
1
2
u
5
+
1
2
u
3
+
1
2
u +
1
2
1
a
10
=
u
u
a
3
=
1
2
u
5
+ u
4
+ ··· +
3
2
u +
1
2
u
4
+ u
2
+ u + 1
a
2
=
1
2
u
5
+ u
4
+
1
2
u
3
+
3
2
u +
3
2
1
a
9
=
1
2
u
5
+
1
2
u
3
+ u
2
+
1
2
u +
1
2
u
3
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
4u
3
8u 10
31
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ u
2
+ 3u + 4
c
2
, c
5
, c
8
c
10
, c
11
u
6
+ u
4
+ 2u
3
+ u
2
+ u + 2
c
3
, c
4
, c
6
c
7
, c
9
, c
12
(u
3
+ 2u + 1)
2
32
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
6
+ 2y
5
+ 3y
4
2y
3
+ 13y
2
y + 16
c
2
, c
5
, c
8
c
10
, c
11
y
6
+ 2y
5
+ 3y
4
+ 2y
3
+ y
2
+ 3y + 4
c
3
, c
4
, c
6
c
7
, c
9
, c
12
(y
3
+ 4y
2
+ 4y 1)
2
33
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
7
1(vol +
1CS) Cusp shape
u = 0.931903 + 0.428993I
a = 0.201029 + 1.207160I
b = 1.00000
c = 0.201029 + 1.207160I
d = 2.10278 0.66546I
9.44074 + 5.13794I 0.68207 3.20902I
u = 0.931903 0.428993I
a = 0.201029 1.207160I
b = 1.00000
c = 0.201029 1.207160I
d = 2.10278 + 0.66546I
9.44074 5.13794I 0.68207 + 3.20902I
u = 0.226699 + 1.074330I
a = 0.914742 + 0.404039I
b = 1.00000
c = 0.914742 + 0.404039I
d = 0.205569
0.787199 12.63587 + 0.I
u = 0.226699 1.074330I
a = 0.914742 0.404039I
b = 1.00000
c = 0.914742 0.404039I
d = 0.205569
0.787199 12.63587 + 0.I
u = 0.705204 + 1.038720I
a = 0.134229 0.806035I
b = 1.00000
c = 0.134229 0.806035I
d = 2.10278 0.66546I
9.44074 + 5.13794I 0.68207 3.20902I
u = 0.705204 1.038720I
a = 0.134229 + 0.806035I
b = 1.00000
c = 0.134229 + 0.806035I
d = 2.10278 + 0.66546I
9.44074 5.13794I 0.68207 + 3.20902I
34
VIII. I
u
8
= h−u
2
+ d, u
2
+ c + u, u
2
+ b + u + 1, u
2
+ a + u, u
3
+ 2u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
u
2
u
u
2
a
12
=
u
u 1
a
8
=
u
u
a
1
=
u
2
+ u + 1
u
a
4
=
u
2
u
u
2
u 1
a
10
=
u
u
a
3
=
u
u 1
a
2
=
u
2
u
u
2
u 1
a
9
=
u
2
u 1
u
2
2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
2
+ 4u 10
35
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
3
+ 4u
2
+ 4u 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
3
+ 2u + 1
36
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
3
8y
2
+ 24y 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y
3
+ 4y
2
+ 4y 1
37
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
8
1(vol +
1CS) Cusp shape
u = 0.22670 + 1.46771I
a = 2.32948 0.80225I
b = 3.32948 0.80225I
c = 2.32948 0.80225I
d = 2.10278 + 0.66546I
9.44074 5.13794I 0.68207 + 3.20902I
u = 0.22670 1.46771I
a = 2.32948 + 0.80225I
b = 3.32948 + 0.80225I
c = 2.32948 + 0.80225I
d = 2.10278 0.66546I
9.44074 + 5.13794I 0.68207 3.20902I
u = 0.453398
a = 0.658967
b = 0.341033
c = 0.658967
d = 0.205569
0.787199 12.6360
38
IX.
I
u
9
= h−u
2
+d, 2u
3
2u
2
+c+2u1, b1, u
3
+a+2u1, u
4
u
3
+2u
2
2u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
2u
3
+ 2u
2
2u + 1
u
2
a
12
=
u
u
3
+ u
a
8
=
2u
3
+ u
2
2u + 1
u
3
+ 2u 1
a
1
=
2u
2
+ 2u 2
u
a
4
=
u
3
2u + 1
1
a
10
=
u
u
a
3
=
u
u
3
+ u
a
2
=
u
3
2u
2
+ 2u 2
1
a
9
=
u
3
u
2
+ 2u 2
u
3
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u 6
39
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ 3u
3
+ 2u
2
+ 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
4
u
3
+ 2u
2
2u + 1
40
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
5y
3
+ 6y
2
+ 4y + 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
41
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
9
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 0.121744 1.306620I
b = 1.00000
c = 0.384881 0.636296I
d = 0.192440 + 0.547877I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.621744 0.440597I
a = 0.121744 + 1.306620I
b = 1.00000
c = 0.384881 + 0.636296I
d = 0.192440 0.547877I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.121744 + 1.306620I
a = 0.621744 0.440597I
b = 1.00000
c = 3.38488 + 1.09575I
d = 1.69244 0.31815I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.121744 1.306620I
a = 0.621744 + 0.440597I
b = 1.00000
c = 3.38488 1.09575I
d = 1.69244 + 0.31815I
3.28987 2.02988I 4.00000 + 3.46410I
42
X. I
u
10
=
h−u
3
+u
2
+du+2, u
3
+c+2u1, b1, u
3
+a2u, u
4
u
3
+2u
2
2u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
u
3
2u + 1
u
3
u
2
+ u 2
a
12
=
u
u
3
+ u
a
8
=
u
u
a
1
=
u
3
+ u
2
2u + 2
u
3
2u + 1
a
4
=
u
3
+ 2u
1
a
10
=
u
u
a
3
=
u
2
+ u + 1
u
3
+ u
2
u + 2
a
2
=
u
3
+ 2u
1
a
9
=
u
3
u
2
+ 2u 2
u
3
+ 2u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u 6
43
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
8
, c
9
(u
2
+ u + 1)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
u
4
u
3
+ 2u
2
2u + 1
44
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
3
c
4
, c
8
, c
9
(y
2
+ y + 1)
2
c
5
, c
6
, c
7
c
10
, c
11
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
45
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
10
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 1.12174 + 1.30662I
b = 1.00000
c = 0.121744 1.306620I
d = 1.69244 + 0.31815I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.621744 0.440597I
a = 1.12174 1.30662I
b = 1.00000
c = 0.121744 + 1.306620I
d = 1.69244 0.31815I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.121744 + 1.306620I
a = 0.378256 + 0.440597I
b = 1.00000
c = 0.621744 0.440597I
d = 0.192440 0.547877I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.121744 1.306620I
a = 0.378256 0.440597I
b = 1.00000
c = 0.621744 + 0.440597I
d = 0.192440 + 0.547877I
3.28987 2.02988I 4.00000 + 3.46410I
46
XI. I
u
11
=
h−u
3
+u
2
+du+2, u
3
+c+2u1, b1, u
3
+a+2u1, u
4
u
3
+2u
2
2u+1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
u
3
2u + 1
u
3
u
2
+ u 2
a
12
=
u
u
3
+ u
a
8
=
u
u
a
1
=
u
3
+ u
2
2u + 2
u
3
2u + 1
a
4
=
u
3
2u + 1
1
a
10
=
u
u
a
3
=
u
u
3
+ u
a
2
=
u
3
2u + 1
1
a
9
=
u
3
u
2
+ 2u 2
u
3
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u 6
47
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ 3u
3
+ 2u
2
+ 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
4
u
3
+ 2u
2
2u + 1
48
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
5y
3
+ 6y
2
+ 4y + 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
49
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
11
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 0.121744 1.306620I
b = 1.00000
c = 0.121744 1.306620I
d = 1.69244 + 0.31815I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.621744 0.440597I
a = 0.121744 + 1.306620I
b = 1.00000
c = 0.121744 + 1.306620I
d = 1.69244 0.31815I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.121744 + 1.306620I
a = 0.621744 0.440597I
b = 1.00000
c = 0.621744 0.440597I
d = 0.192440 0.547877I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.121744 1.306620I
a = 0.621744 + 0.440597I
b = 1.00000
c = 0.621744 + 0.440597I
d = 0.192440 + 0.547877I
3.28987 2.02988I 4.00000 + 3.46410I
50
XII. I
u
12
= h−u
3
+ u
2
+ d u + 2, u
3
+ c + 2u 1, 2u
3
2u
2
+ b + 2u, 2u
3
2u
2
+ a + 2u 1, u
4
u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
u
3
2u + 1
u
3
u
2
+ u 2
a
12
=
u
u
3
+ u
a
8
=
u
u
a
1
=
u
3
+ u
2
2u + 2
u
3
2u + 1
a
4
=
2u
3
+ 2u
2
2u + 1
2u
3
+ 2u
2
2u
a
10
=
u
u
a
3
=
2u
3
+ u
2
2u + 1
2u
3
+ u
2
2u
a
2
=
2u
3
+ 2u
2
2u + 1
2u
3
+ 2u
2
2u
a
9
=
2u
2
2u + 2
2u
2
3u + 2
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u 6
51
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
4
+ 3u
3
+ 2u
2
+ 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
u
4
u
3
+ 2u
2
2u + 1
52
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
4
5y
3
+ 6y
2
+ 4y + 1
c
2
, c
3
, c
4
c
5
, c
6
, c
7
c
8
, c
9
, c
10
c
11
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
53
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
12
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 0.384881 0.636296I
b = 0.615119 0.636296I
c = 0.121744 1.306620I
d = 1.69244 + 0.31815I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.621744 0.440597I
a = 0.384881 + 0.636296I
b = 0.615119 + 0.636296I
c = 0.121744 + 1.306620I
d = 1.69244 0.31815I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.121744 + 1.306620I
a = 3.38488 + 1.09575I
b = 4.38488 + 1.09575I
c = 0.621744 0.440597I
d = 0.192440 0.547877I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.121744 1.306620I
a = 3.38488 1.09575I
b = 4.38488 1.09575I
c = 0.621744 + 0.440597I
d = 0.192440 + 0.547877I
3.28987 2.02988I 4.00000 + 3.46410I
54
XIII.
I
u
13
= hu
3
+ d + u, u
3
+ c 2u, b 1, u
3
+ a + 2u 1, u
4
u
3
+ 2u
2
2u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u
2
a
7
=
u
3
+ 2u
u
3
u
a
12
=
u
u
3
+ u
a
8
=
u
2
+ u + 1
u
3
u 1
a
1
=
u
3
+ u
2
2u + 2
u
3
+ u 1
a
4
=
u
3
2u + 1
1
a
10
=
u
u
a
3
=
u
u
3
+ u
a
2
=
2u
3
+ 2u
2
4u + 3
2u
3
+ 2u 2
a
9
=
u
3
u
2
+ 2u 2
u
3
u + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
3
+ 4u 6
55
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(u
2
+ u + 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
u
4
u
3
+ 2u
2
2u + 1
56
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
6
c
7
, c
8
, c
12
(y
2
+ y + 1)
2
c
3
, c
4
, c
5
c
9
, c
10
, c
11
y
4
+ 3y
3
+ 2y
2
+ 1
57
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
13
1(vol +
1CS) Cusp shape
u = 0.621744 + 0.440597I
a = 0.121744 1.306620I
b = 1.00000
c = 1.12174 + 1.30662I
d = 0.500000 0.866025I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.621744 0.440597I
a = 0.121744 + 1.306620I
b = 1.00000
c = 1.12174 1.30662I
d = 0.500000 + 0.866025I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.121744 + 1.306620I
a = 0.621744 0.440597I
b = 1.00000
c = 0.378256 + 0.440597I
d = 0.500000 + 0.866025I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.121744 1.306620I
a = 0.621744 + 0.440597I
b = 1.00000
c = 0.378256 0.440597I
d = 0.500000 0.866025I
3.28987 2.02988I 4.00000 + 3.46410I
58
XIV. I
u
14
= hau + d + a u, c + a 1, b 1, a
2
a + u + 1, u
2
+ u + 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
u + 1
a
7
=
a + 1
au a + u
a
12
=
u
u + 1
a
8
=
au 2a + 1
au + u
a
1
=
u 1
au
a
4
=
a
1
a
10
=
u
u
a
3
=
au + 2a u 1
au + a u
a
2
=
2au + a 2u 1
1
a
9
=
u + 1
au
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u 2
59
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
5
c
8
, c
10
, c
11
(u
2
+ u + 1)
2
c
3
, c
4
, c
6
c
7
, c
9
, c
12
u
4
u
3
+ 2u
2
2u + 1
60
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
5
c
8
, c
10
, c
11
(y
2
+ y + 1)
2
c
3
, c
4
, c
6
c
7
, c
9
, c
12
y
4
+ 3y
3
+ 2y
2
+ 1
61
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
14
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0.070696 + 0.758745I
b = 1.00000
c = 1.070700 0.758745I
d = 0.192440 + 0.547877I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.500000 + 0.866025I
a = 1.070700 0.758745I
b = 1.00000
c = 0.070696 + 0.758745I
d = 1.69244 + 0.31815I
3.28987 2.02988I 4.00000 + 3.46410I
u = 0.500000 0.866025I
a = 0.070696 0.758745I
b = 1.00000
c = 1.070700 + 0.758745I
d = 0.192440 0.547877I
3.28987 + 2.02988I 4.00000 3.46410I
u = 0.500000 0.866025I
a = 1.070700 + 0.758745I
b = 1.00000
c = 0.070696 0.758745I
d = 1.69244 0.31815I
3.28987 + 2.02988I 4.00000 3.46410I
62
XV. I
u
15
= hd + 1, c u, b + u 1, a + u, u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
1
a
7
=
u
1
a
12
=
u
0
a
8
=
u 1
1
a
1
=
u 1
u
a
4
=
u
u + 1
a
10
=
u
u
a
3
=
u 1
u
a
2
=
u 1
u
a
9
=
u 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4
63
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
, c
8
u
2
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
u
2
+ 1
64
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
8
y
2
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
(y + 1)
2
65
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
15
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.000000I
b = 1.00000 1.00000I
c = 1.000000I
d = 1.00000
4.93480 4.00000
u = 1.000000I
a = 1.000000I
b = 1.00000 + 1.00000I
c = 1.000000I
d = 1.00000
4.93480 4.00000
66
XVI. I
u
16
= hd, c 1, b u 1, a u, u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
1
a
7
=
1
0
a
12
=
u
0
a
8
=
1
0
a
1
=
u
0
a
4
=
u
u + 1
a
10
=
u
u
a
3
=
u 1
u
a
2
=
1
u
a
9
=
u + 1
1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
67
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
c
2
, c
3
, c
4
c
5
, c
8
, c
9
c
10
, c
11
u
2
+ 1
c
6
, c
7
, c
12
u
2
68
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
2
c
2
, c
3
, c
4
c
5
, c
8
, c
9
c
10
, c
11
(y + 1)
2
c
6
, c
7
, c
12
y
2
69
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
16
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.000000I
b = 1.00000 + 1.00000I
c = 1.00000
d = 0
1.64493 8.00000
u = 1.000000I
a = 1.000000I
b = 1.00000 1.00000I
c = 1.00000
d = 0
1.64493 8.00000
70
XVII. I
u
17
= hd + 1, c + u, b 1, a 1, u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
1
a
7
=
u
1
a
12
=
u
0
a
8
=
u 1
1
a
1
=
u + 1
u
a
4
=
1
1
a
10
=
u
u
a
3
=
1
1
a
2
=
u + 2
u + 1
a
9
=
u
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
71
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
c
2
, c
5
, c
6
c
7
, c
8
, c
10
c
11
, c
12
u
2
+ 1
c
3
, c
4
, c
9
u
2
72
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
2
c
2
, c
5
, c
6
c
7
, c
8
, c
10
c
11
, c
12
(y + 1)
2
c
3
, c
4
, c
9
y
2
73
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
17
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 1.00000
b = 1.00000
c = 1.000000I
d = 1.00000
1.64493 8.00000
u = 1.000000I
a = 1.00000
b = 1.00000
c = 1.000000I
d = 1.00000
1.64493 8.00000
74
XVIII. I
u
18
= hd + 1, ca + u 1, b a 1, u
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
0
u
a
5
=
1
1
a
7
=
c
1
a
12
=
u
0
a
8
=
c 1
1
a
1
=
cu u
u
a
4
=
a
a + 1
a
10
=
u
u
a
3
=
a 1
a
a
2
=
cu + a u 1
a u
a
9
=
au + u
au
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2
(iv) u-Polynomials at the component : It cannot be defined for a positive
dimension component.
(v) Riley Polynomials at the component : It cannot be defined for a positive
dimension component.
75
(iv) Complex Volumes and Cusp Shapes
Solution to I
u
18
1(vol +
1CS) Cusp shape
u = ···
a = ···
b = ···
c = ···
d = ···
3.28987 2.00000
76
XIX. I
v
1
= ha, d + 1, c + a v 2, b 1, v
2
+ 1i
(i) Arc colorings
a
6
=
1
0
a
11
=
v
0
a
5
=
1
0
a
7
=
v + 2
1
a
12
=
v
0
a
8
=
v + 1
1
a
1
=
v + 1
v
a
4
=
0
1
a
10
=
v
0
a
3
=
1
1
a
2
=
v
v + 1
a
9
=
v
v
(ii) Obstruction class = 1
(iii) Cusp Shapes = 8
77
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u 1)
2
c
2
, c
3
, c
4
c
6
, c
7
, c
8
c
9
, c
12
u
2
+ 1
c
5
, c
10
, c
11
u
2
78
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y 1)
2
c
2
, c
3
, c
4
c
6
, c
7
, c
8
c
9
, c
12
(y + 1)
2
c
5
, c
10
, c
11
y
2
79
(vi) Complex Volumes and Cusp Shapes
Solutions to I
v
1
1(vol +
1CS) Cusp shape
v = 1.000000I
a = 0
b = 1.00000
c = 2.00000 + 1.00000I
d = 1.00000
1.64493 8.00000
v = 1.000000I
a = 0
b = 1.00000
c = 2.00000 1.00000I
d = 1.00000
1.64493 8.00000
80
XX. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
u
2
(u 1)
6
(u
2
+ u + 1)
6
(u
3
+ 4u
2
+ 4u 1)(u
4
+ 3u
3
+ 2u
2
+ 1)
3
· (u
6
+ 2u
5
+ 3u
4
+ 2u
3
+ u
2
+ 3u + 4)
3
· (u
8
+ 3u
7
+ 8u
6
+ 10u
5
+ 14u
4
+ 11u
3
+ 12u
2
+ 4u + 1)
3
· (u
10
+ 3u
9
+ 8u
8
+ 10u
7
+ 14u
6
+ 8u
5
+ 5u
4
+ 15u
3
+ 48u
2
+ 48u + 16)
c
2
, c
8
u
2
(u
2
+ 1)
3
(u
2
+ u + 1)
6
(u
3
+ 2u + 1)(u
4
u
3
+ 2u
2
2u + 1)
3
· (u
6
+ u
4
+ 2u
3
+ u
2
+ u + 2)
3
· (u
8
u
7
+ 2u
6
2u
5
+ 4u
4
3u
3
+ 2u
2
+ 1)
3
· (u
10
u
9
+ 2u
8
2u
7
+ 4u
6
6u
5
+ 5u
4
7u
3
+ 8u
2
4u + 4)
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
u
2
(u
2
+ 1)
3
(u
2
+ u + 1)
2
(u
3
+ 2u + 1)
5
(u
4
u
3
+ 2u
2
2u + 1)
5
· (u
6
+ u
4
+ 2u
3
+ u
2
+ u + 2)
· (u
8
u
7
+ 3u
6
3u
5
+ 3u
4
5u
3
+ 4u
2
4u + 4)
· (u
8
+ 2u
7
+ 6u
6
+ 8u
5
+ 10u
4
+ 9u
3
+ 5u
2
+ 3u + 2)
2
· (u
10
u
9
+ 7u
8
7u
7
+ 18u
6
17u
5
+ 18u
4
15u
3
+ 3u
2
+ 1)
81
XXI. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
y
2
(y 1)
6
(y
2
+ y + 1)
6
(y
3
8y
2
+ 24y 1)
· (y
4
5y
3
+ 6y
2
+ 4y + 1)
3
(y
6
+ 2y
5
+ 3y
4
2y
3
+ 13y
2
y + 16)
3
· (y
8
+ 7y
7
+ 32y
6
+ 82y
5
+ 146y
4
+ 151y
3
+ 84y
2
+ 8y + 1)
3
· (y
10
+ 7y
9
+ ··· 768y + 256)
c
2
, c
8
y
2
(y + 1)
6
(y
2
+ y + 1)
6
(y
3
+ 4y
2
+ 4y 1)(y
4
+ 3y
3
+ 2y
2
+ 1)
3
· (y
6
+ 2y
5
+ 3y
4
+ 2y
3
+ y
2
+ 3y + 4)
3
· (y
8
+ 3y
7
+ 8y
6
+ 10y
5
+ 14y
4
+ 11y
3
+ 12y
2
+ 4y + 1)
3
· (y
10
+ 3y
9
+ 8y
8
+ 10y
7
+ 14y
6
+ 8y
5
+ 5y
4
+ 15y
3
+ 48y
2
+ 48y + 16)
c
3
, c
4
, c
5
c
6
, c
7
, c
9
c
10
, c
11
, c
12
y
2
(y + 1)
6
(y
2
+ y + 1)
2
(y
3
+ 4y
2
+ 4y 1)
5
(y
4
+ 3y
3
+ 2y
2
+ 1)
5
· (y
6
+ 2y
5
+ 3y
4
+ 2y
3
+ y
2
+ 3y + 4)
· (y
8
+ 5y
7
+ 9y
6
+ 7y
5
+ 3y
4
y
3
+ 16y + 16)
· (y
8
+ 8y
7
+ 24y
6
+ 30y
5
+ 8y
4
5y
3
+ 11y
2
+ 11y + 4)
2
· (y
10
+ 13y
9
+ ··· + 6y + 1)
82