12a
0752
(K12a
0752
)
A knot diagram
1
Linearized knot diagam
3 8 10 9 12 11 2 7 4 1 6 5
Solving Sequence
3,10 4,8
2 1 11 7 6 9 5 12
c
3
c
2
c
1
c
10
c
7
c
6
c
9
c
4
c
12
c
5
, c
8
, c
11
Ideals for irreducible components
2
of X
par
I
u
1
= h9.34661 × 10
34
u
64
1.16625 × 10
35
u
63
+ ··· + 2.68953 × 10
35
b + 2.48209 × 10
35
,
2.45811 × 10
33
u
64
+ 8.33232 × 10
33
u
63
+ ··· + 1.12064 × 10
34
a + 2.26849 × 10
34
, u
65
u
64
+ ··· + 12u 4i
I
u
2
= h−a
3
u 2a
2
u 3a
2
+ au + 2b 4a + 3u 1, a
4
4a
3
u + a
3
3a
2
u 4a
2
4a + 2u, u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 73 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h9.35×10
34
u
64
1.17×10
35
u
63
+· · ·+2.69×10
35
b+2.48×10
35
, 2.46×
10
33
u
64
+8.33×10
33
u
63
+· · ·+1.12×10
34
a+2.27×10
34
, u
65
u
64
+· · ·+12u4i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
u
2
a
8
=
0.219349u
64
0.743533u
63
+ ··· 1.52002u 2.02429
0.347518u
64
+ 0.433625u
63
+ ··· + 0.00867489u 0.922871
a
2
=
0.263361u
64
+ 0.721780u
63
+ ··· 1.26586u 4.04726
0.133396u
64
0.108354u
63
+ ··· + 1.92192u 0.715761
a
1
=
0.396757u
64
+ 0.613426u
63
+ ··· + 0.656058u 4.76302
0.133396u
64
0.108354u
63
+ ··· + 1.92192u 0.715761
a
11
=
0.665779u
64
+ 1.57509u
63
+ ··· + 8.10654u 7.87229
0.118149u
64
0.522205u
63
+ ··· 2.63479u 0.297265
a
7
=
0.637359u
64
0.265428u
63
+ ··· + 0.870487u 0.828079
0.193937u
64
0.121331u
63
+ ··· 2.80066u + 0.434278
a
6
=
1.05857u
64
+ 0.511308u
63
+ ··· + 11.4864u 2.05186
0.119417u
64
+ 0.0796398u
63
+ ··· + 2.46009u + 0.413703
a
9
=
u
u
3
+ u
a
5
=
u
2
+ 1
u
4
+ 2u
2
a
12
=
0.353724u
64
+ 0.868730u
63
+ ··· 0.913544u 4.49532
0.0369830u
64
0.0480797u
63
+ ··· + 2.57325u 0.708124
(ii) Obstruction class = 1
(iii) Cusp Shapes = 0.196131u
64
+ 0.795929u
63
+ ··· + 1.11042u 13.7264
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
8
u
65
+ 21u
64
+ ··· 19u + 25
c
2
, c
7
u
65
+ u
64
+ ··· + 9u + 5
c
3
, c
4
, c
9
u
65
+ u
64
+ ··· + 12u + 4
c
5
, c
6
, c
11
c
12
u
65
u
64
+ ··· 11u + 1
c
10
u
65
15u
64
+ ··· + 14637u 579
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
y
65
+ 51y
64
+ ··· + 23161y 625
c
2
, c
7
y
65
21y
64
+ ··· 19y 25
c
3
, c
4
, c
9
y
65
+ 63y
64
+ ··· + 40y 16
c
5
, c
6
, c
11
c
12
y
65
+ 75y
64
+ ··· + 33y 1
c
10
y
65
+ 15y
64
+ ··· + 32505249y 335241
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.102835 + 0.976475I
a = 0.032757 + 1.095510I
b = 0.798701 0.498342I
1.74608 2.06336I 3.79758 + 4.39158I
u = 0.102835 0.976475I
a = 0.032757 1.095510I
b = 0.798701 + 0.498342I
1.74608 + 2.06336I 3.79758 4.39158I
u = 0.906499 + 0.335695I
a = 1.00090 + 1.11719I
b = 1.002750 0.732824I
5.22317 9.63115I 7.07608 + 7.08853I
u = 0.906499 0.335695I
a = 1.00090 1.11719I
b = 1.002750 + 0.732824I
5.22317 + 9.63115I 7.07608 7.08853I
u = 0.863103 + 0.392575I
a = 0.189374 + 0.143384I
b = 0.712709 0.812089I
4.34155 + 3.82461I 5.48743 2.35121I
u = 0.863103 0.392575I
a = 0.189374 0.143384I
b = 0.712709 + 0.812089I
4.34155 3.82461I 5.48743 + 2.35121I
u = 0.646090 + 0.839750I
a = 0.412776 + 1.185770I
b = 0.793279 0.769153I
2.98842 + 1.42035I 0
u = 0.646090 0.839750I
a = 0.412776 1.185770I
b = 0.793279 + 0.769153I
2.98842 1.42035I 0
u = 0.622090 + 0.690604I
a = 0.280367 + 0.412655I
b = 0.850043 0.730237I
2.97067 2.17133I 0.55827 + 3.61156I
u = 0.622090 0.690604I
a = 0.280367 0.412655I
b = 0.850043 + 0.730237I
2.97067 + 2.17133I 0.55827 3.61156I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.810994 + 0.423522I
a = 0.88886 + 1.24338I
b = 0.957966 0.730403I
2.05615 + 7.11041I 3.69386 8.87039I
u = 0.810994 0.423522I
a = 0.88886 1.24338I
b = 0.957966 + 0.730403I
2.05615 7.11041I 3.69386 + 8.87039I
u = 0.267823 + 1.055660I
a = 0.43521 + 1.61801I
b = 0.814658 + 0.091365I
8.43583 + 0.53108I 0
u = 0.267823 1.055660I
a = 0.43521 1.61801I
b = 0.814658 0.091365I
8.43583 0.53108I 0
u = 0.738216 + 0.505729I
a = 0.275387 + 0.232751I
b = 0.771634 0.765297I
2.62252 1.43772I 1.92916 + 3.83462I
u = 0.738216 0.505729I
a = 0.275387 0.232751I
b = 0.771634 + 0.765297I
2.62252 + 1.43772I 1.92916 3.83462I
u = 0.685313 + 0.553849I
a = 0.67132 + 1.35014I
b = 0.896052 0.725197I
2.82813 3.37856I 0.87863 + 2.72445I
u = 0.685313 0.553849I
a = 0.67132 1.35014I
b = 0.896052 + 0.725197I
2.82813 + 3.37856I 0.87863 2.72445I
u = 0.210657 + 1.099830I
a = 0.227640 + 1.282450I
b = 0.747845 0.100142I
0.354198 + 0.463146I 0
u = 0.210657 1.099830I
a = 0.227640 1.282450I
b = 0.747845 + 0.100142I
0.354198 0.463146I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.634423 + 0.925822I
a = 0.136818 + 0.495445I
b = 0.939159 0.735967I
3.43259 + 4.27319I 0
u = 0.634423 0.925822I
a = 0.136818 0.495445I
b = 0.939159 + 0.735967I
3.43259 4.27319I 0
u = 0.696261 + 0.218895I
a = 1.85017 + 0.05497I
b = 1.039610 + 0.156898I
10.84640 4.13320I 13.21141 + 4.39737I
u = 0.696261 0.218895I
a = 1.85017 0.05497I
b = 1.039610 0.156898I
10.84640 + 4.13320I 13.21141 4.39737I
u = 0.042531 + 1.303050I
a = 0.259174 + 0.846936I
b = 1.051340 0.358180I
2.32426 1.84830I 0
u = 0.042531 1.303050I
a = 0.259174 0.846936I
b = 1.051340 + 0.358180I
2.32426 + 1.84830I 0
u = 0.543909 + 0.434620I
a = 0.224764 + 0.261112I
b = 0.162639 + 0.576900I
7.07962 + 1.85589I 6.10075 3.40773I
u = 0.543909 0.434620I
a = 0.224764 0.261112I
b = 0.162639 0.576900I
7.07962 1.85589I 6.10075 + 3.40773I
u = 0.046525 + 1.337050I
a = 1.26413 2.52442I
b = 0.872078 + 0.710596I
5.01392 2.72133I 0
u = 0.046525 1.337050I
a = 1.26413 + 2.52442I
b = 0.872078 0.710596I
5.01392 + 2.72133I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.179831 + 1.357410I
a = 0.400953 + 0.852353I
b = 1.104970 0.245801I
1.60426 + 5.26138I 0
u = 0.179831 1.357410I
a = 0.400953 0.852353I
b = 1.104970 + 0.245801I
1.60426 5.26138I 0
u = 0.129798 + 1.375160I
a = 0.191467 + 0.722569I
b = 1.111650 0.471770I
3.93915 + 0.11450I 0
u = 0.129798 1.375160I
a = 0.191467 0.722569I
b = 1.111650 + 0.471770I
3.93915 0.11450I 0
u = 0.589848 + 0.142876I
a = 1.71897 + 0.20675I
b = 0.945800 + 0.132751I
3.13502 + 2.54263I 12.19167 6.47264I
u = 0.589848 0.142876I
a = 1.71897 0.20675I
b = 0.945800 0.132751I
3.13502 2.54263I 12.19167 + 6.47264I
u = 0.26288 + 1.39636I
a = 0.486577 + 0.820787I
b = 1.156320 0.188953I
5.67735 7.60097I 0
u = 0.26288 1.39636I
a = 0.486577 0.820787I
b = 1.156320 + 0.188953I
5.67735 + 7.60097I 0
u = 0.05852 + 1.42211I
a = 0.020754 + 0.973316I
b = 0.067011 0.763857I
5.50108 1.93754I 0
u = 0.05852 1.42211I
a = 0.020754 0.973316I
b = 0.067011 + 0.763857I
5.50108 + 1.93754I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.17975 + 1.44172I
a = 0.063972 + 0.963885I
b = 0.192321 0.811399I
1.08595 + 4.44930I 0
u = 0.17975 1.44172I
a = 0.063972 0.963885I
b = 0.192321 + 0.811399I
1.08595 4.44930I 0
u = 0.10818 + 1.48887I
a = 0.53625 1.98157I
b = 0.926383 + 0.789415I
4.95976 + 3.21067I 0
u = 0.10818 1.48887I
a = 0.53625 + 1.98157I
b = 0.926383 0.789415I
4.95976 3.21067I 0
u = 0.499570
a = 1.32716
b = 0.807460
1.30268 6.90340
u = 0.04216 + 1.51719I
a = 0.87256 1.55666I
b = 0.847474 + 0.830941I
5.21368 + 2.83714I 0
u = 0.04216 1.51719I
a = 0.87256 + 1.55666I
b = 0.847474 0.830941I
5.21368 2.83714I 0
u = 0.35569 + 1.47673I
a = 0.29387 2.00895I
b = 1.050800 + 0.751869I
0.5934 14.1941I 0
u = 0.35569 1.47673I
a = 0.29387 + 2.00895I
b = 1.050800 0.751869I
0.5934 + 14.1941I 0
u = 0.32039 + 1.49216I
a = 0.995709 0.809498I
b = 0.677206 + 0.890530I
1.74717 + 8.10835I 0
9
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.32039 1.49216I
a = 0.995709 + 0.809498I
b = 0.677206 0.890530I
1.74717 8.10835I 0
u = 0.29726 + 1.49890I
a = 0.10605 2.00465I
b = 1.025040 + 0.769571I
8.28669 + 11.14520I 0
u = 0.29726 1.49890I
a = 0.10605 + 2.00465I
b = 1.025040 0.769571I
8.28669 11.14520I 0
u = 0.22688 + 1.51321I
a = 0.11620 1.98583I
b = 0.991790 + 0.785678I
9.55198 6.67114I 0
u = 0.22688 1.51321I
a = 0.11620 + 1.98583I
b = 0.991790 0.785678I
9.55198 + 6.67114I 0
u = 0.24946 + 1.51401I
a = 0.995693 0.981031I
b = 0.725795 + 0.880563I
9.21413 5.02177I 0
u = 0.24946 1.51401I
a = 0.995693 + 0.981031I
b = 0.725795 0.880563I
9.21413 + 5.02177I 0
u = 0.17017 + 1.52793I
a = 0.96695 1.18510I
b = 0.776005 + 0.866492I
10.22350 + 0.53227I 0
u = 0.17017 1.52793I
a = 0.96695 + 1.18510I
b = 0.776005 0.866492I
10.22350 0.53227I 0
u = 0.244758 + 0.351804I
a = 0.155281 + 0.307568I
b = 0.120495 + 0.345871I
0.138519 0.946103I 2.87476 + 7.19365I
10
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.244758 0.351804I
a = 0.155281 0.307568I
b = 0.120495 0.345871I
0.138519 + 0.946103I 2.87476 7.19365I
u = 0.282593 + 0.153006I
a = 4.08925 1.68114I
b = 0.949049 + 0.506277I
8.95062 + 1.80203I 12.10355 2.75353I
u = 0.282593 0.153006I
a = 4.08925 + 1.68114I
b = 0.949049 0.506277I
8.95062 1.80203I 12.10355 + 2.75353I
u = 0.180687 + 0.202078I
a = 0.02811 + 3.86747I
b = 0.881222 0.565760I
0.97228 + 2.21380I 11.07503 3.04073I
u = 0.180687 0.202078I
a = 0.02811 3.86747I
b = 0.881222 + 0.565760I
0.97228 2.21380I 11.07503 + 3.04073I
11
II. I
u
2
= h−a
3
u 2a
2
u 3a
2
+ au + 2b 4a + 3u 1, a
4
4a
3
u + a
3
3a
2
u 4a
2
4a + 2u, u
2
+ 1i
(i) Arc colorings
a
3
=
1
0
a
10
=
0
u
a
4
=
1
1
a
8
=
a
1
2
a
3
u + a
2
u + ··· + 2a +
1
2
a
2
=
1
2
a
3
u
3
2
a
2
u + ···
1
2
a
2
1
2
a
3
2
a
2
u + 2au + ··· +
1
2
a +
1
2
a
1
=
1
2
a
3
u +
3
2
au + ···
3
2
a
2
+
1
2
3
2
a
2
u + 2au + ··· +
1
2
a +
1
2
a
11
=
1
2
a
3
u
3
2
au + ··· +
3
2
a
2
1
2
a + 2u
a
7
=
3
2
a
2
u
1
2
u + ··· +
3
2
a +
1
2
1
2
a
3
u + a
2
u + ··· + 2a +
1
2
a
6
=
3
2
a
2
u +
1
2
u + ···
3
2
a +
1
2
3
2
a
2
u + au + ···
3
2
a +
1
2
a
9
=
u
0
a
5
=
0
1
a
12
=
1
2
a
3
u +
3
2
au + ···
3
2
a
2
+
1
2
1
2
a
3
u +
3
2
a
2
u + ··· +
1
2
a + 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 2a
3
6a
2
u + 4a
2
8au 2a 2u 10
12
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
4
c
2
, c
7
(u
4
u
2
+ 1)
2
c
3
, c
4
, c
9
(u
2
+ 1)
4
c
5
, c
6
, c
11
c
12
(u
4
+ 3u
2
+ 1)
2
c
8
(u
2
+ u + 1)
4
c
10
(u
2
+ u 1)
4
13
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
8
(y
2
+ y + 1)
4
c
2
, c
7
(y
2
y + 1)
4
c
3
, c
4
, c
9
(y + 1)
8
c
5
, c
6
, c
11
c
12
(y
2
+ 3y + 1)
4
c
10
(y
2
3y + 1)
4
14
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.809017 0.401259I
b = 0.866025 0.500000I
7.23771 2.02988I 6.00000 + 3.46410I
u = 1.000000I
a = 0.309017 + 0.464767I
b = 0.866025 0.500000I
0.65797 + 2.02988I 6.00000 3.46410I
u = 1.000000I
a = 0.30902 + 1.53523I
b = 0.866025 0.500000I
0.65797 2.02988I 6.00000 + 3.46410I
u = 1.000000I
a = 0.80902 + 2.40126I
b = 0.866025 0.500000I
7.23771 + 2.02988I 6.00000 3.46410I
u = 1.000000I
a = 0.809017 + 0.401259I
b = 0.866025 + 0.500000I
7.23771 + 2.02988I 6.00000 3.46410I
u = 1.000000I
a = 0.309017 0.464767I
b = 0.866025 + 0.500000I
0.65797 2.02988I 6.00000 + 3.46410I
u = 1.000000I
a = 0.30902 1.53523I
b = 0.866025 + 0.500000I
0.65797 + 2.02988I 6.00000 3.46410I
u = 1.000000I
a = 0.80902 2.40126I
b = 0.866025 + 0.500000I
7.23771 2.02988I 6.00000 + 3.46410I
15
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
4
)(u
65
+ 21u
64
+ ··· 19u + 25)
c
2
, c
7
((u
4
u
2
+ 1)
2
)(u
65
+ u
64
+ ··· + 9u + 5)
c
3
, c
4
, c
9
((u
2
+ 1)
4
)(u
65
+ u
64
+ ··· + 12u + 4)
c
5
, c
6
, c
11
c
12
((u
4
+ 3u
2
+ 1)
2
)(u
65
u
64
+ ··· 11u + 1)
c
8
((u
2
+ u + 1)
4
)(u
65
+ 21u
64
+ ··· 19u + 25)
c
10
((u
2
+ u 1)
4
)(u
65
15u
64
+ ··· + 14637u 579)
16
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
8
((y
2
+ y + 1)
4
)(y
65
+ 51y
64
+ ··· + 23161y 625)
c
2
, c
7
((y
2
y + 1)
4
)(y
65
21y
64
+ ··· 19y 25)
c
3
, c
4
, c
9
((y + 1)
8
)(y
65
+ 63y
64
+ ··· + 40y 16)
c
5
, c
6
, c
11
c
12
((y
2
+ 3y + 1)
4
)(y
65
+ 75y
64
+ ··· + 33y 1)
c
10
((y
2
3y + 1)
4
)(y
65
+ 15y
64
+ ··· + 3.25052 × 10
7
y 335241)
17