12a
0753
(K12a
0753
)
A knot diagram
1
Linearized knot diagam
3 8 10 9 12 11 2 1 4 7 6 5
Solving Sequence
5,9
4 10
1,3
8 2 7 12 6 11
c
4
c
9
c
3
c
8
c
2
c
7
c
12
c
5
c
11
c
1
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h3.47678 × 10
21
u
49
1.33799 × 10
21
u
48
+ ··· + 1.34820 × 10
22
b 3.88891 × 10
22
,
2.21158 × 10
21
u
49
1.62283 × 10
21
u
48
+ ··· + 1.34820 × 10
22
a 4.79098 × 10
22
, u
50
u
49
+ ··· 4u + 4i
I
u
2
= hb
2
bu + 1, a
2
+ a + 1, u
2
+ 1i
* 2 irreducible components of dim
C
= 0, with total 58 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h3.48 × 10
21
u
49
1.34 × 10
21
u
48
+ · · · + 1.35 × 10
22
b 3.89 × 10
22
, 2.21 ×
10
21
u
49
1.62×10
21
u
48
+· · ·+1.35×10
22
a4.79×10
22
, u
50
u
49
+· · ·4u+4i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
4
=
1
u
2
a
10
=
u
u
3
+ u
a
1
=
0.164040u
49
+ 0.120370u
48
+ ··· + 8.84293u + 3.55361
0.257882u
49
+ 0.0992428u
48
+ ··· + 2.87776u + 2.88452
a
3
=
u
2
+ 1
u
4
+ 2u
2
a
8
=
0.570562u
49
0.676764u
48
+ ··· 8.50993u 2.63929
0.00372260u
49
+ 0.222580u
48
+ ··· 6.74010u 1.68097
a
2
=
0.137529u
49
0.0400013u
48
+ ··· + 4.53679u + 1.15498
0.233430u
49
+ 0.0703666u
48
+ ··· + 1.46685u + 2.29315
a
7
=
0.836099u
49
0.448168u
48
+ ··· 24.1572u 6.13765
0.144284u
49
+ 0.0267194u
48
+ ··· 0.748206u 1.92710
a
12
=
0.0938429u
49
+ 0.0211270u
48
+ ··· + 5.96518u + 0.669092
0.257882u
49
+ 0.0992428u
48
+ ··· + 2.87776u + 2.88452
a
6
=
0.122630u
49
0.215276u
48
+ ··· 0.518300u 8.94249
0.297613u
49
0.201245u
48
+ ··· 3.06461u + 0.521412
a
11
=
0.0377076u
49
0.204943u
48
+ ··· 5.37290u 2.05267
0.215869u
49
+ 0.420688u
48
+ ··· + 7.63220u + 1.46112
(ii) Obstruction class = 1
(iii) Cusp Shapes =
6041655765283033164853
3370503149641393660032
u
49
2696370501616779290413
1685251574820696830016
u
48
+ ···
15380340131345433270079
421312893705174207504
u
15926907601216017826235
842625787410348415008
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
50
+ 27u
49
+ ··· + 131u + 25
c
2
, c
7
u
50
+ u
49
+ ··· + u + 5
c
3
, c
4
, c
9
u
50
+ u
49
+ ··· + 4u + 4
c
5
, c
6
, c
10
c
11
, c
12
u
50
u
49
+ ··· + 9u + 1
c
8
u
50
+ 3u
49
+ ··· + 519u + 345
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
50
3y
49
+ ··· + 89y + 625
c
2
, c
7
y
50
27y
49
+ ··· 131y + 25
c
3
, c
4
, c
9
y
50
+ 53y
49
+ ··· 8y + 16
c
5
, c
6
, c
10
c
11
, c
12
y
50
+ 69y
49
+ ··· 39y + 1
c
8
y
50
+ 33y
49
+ ··· 1916391y + 119025
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.825284 + 0.564850I
a = 1.018290 0.857226I
b = 0.03252 1.72373I
12.07120 2.72832I 1.32353 + 2.43193I
u = 0.825284 0.564850I
a = 1.018290 + 0.857226I
b = 0.03252 + 1.72373I
12.07120 + 2.72832I 1.32353 2.43193I
u = 0.084210 + 1.043320I
a = 0.384445 0.811272I
b = 0.178045 + 0.054788I
1.54403 2.06175I 7.89718 + 4.27454I
u = 0.084210 1.043320I
a = 0.384445 + 0.811272I
b = 0.178045 0.054788I
1.54403 + 2.06175I 7.89718 4.27454I
u = 0.650825 + 0.686901I
a = 0.574983 + 0.899543I
b = 0.001959 + 1.082170I
5.77062 + 1.33212I 3.10818 0.66099I
u = 0.650825 0.686901I
a = 0.574983 0.899543I
b = 0.001959 1.082170I
5.77062 1.33212I 3.10818 + 0.66099I
u = 0.798083 + 0.491554I
a = 1.12468 + 0.88964I
b = 0.227660 + 1.067050I
5.13290 6.35349I 1.14202 + 7.17760I
u = 0.798083 0.491554I
a = 1.12468 0.88964I
b = 0.227660 1.067050I
5.13290 + 6.35349I 1.14202 7.17760I
u = 0.267440 + 1.044800I
a = 0.170870 + 0.254106I
b = 0.227134 + 0.746761I
3.70325 + 0.50512I 4.05141 + 0.I
u = 0.267440 1.044800I
a = 0.170870 0.254106I
b = 0.227134 0.746761I
3.70325 0.50512I 4.05141 + 0.I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.981288 + 0.514013I
a = 0.96413 1.07465I
b = 0.05777 1.74519I
15.2476 + 7.5356I 0
u = 0.981288 0.514013I
a = 0.96413 + 1.07465I
b = 0.05777 + 1.74519I
15.2476 7.5356I 0
u = 0.872961 + 0.773969I
a = 0.729263 0.828003I
b = 0.00151 1.74975I
16.0293 1.3459I 0
u = 0.872961 0.773969I
a = 0.729263 + 0.828003I
b = 0.00151 + 1.74975I
16.0293 + 1.3459I 0
u = 0.233208 + 1.157960I
a = 0.103022 0.205335I
b = 0.06216 1.60924I
11.81320 + 0.61087I 0
u = 0.233208 1.157960I
a = 0.103022 + 0.205335I
b = 0.06216 + 1.60924I
11.81320 0.61087I 0
u = 0.626871 + 0.455302I
a = 1.027610 + 0.620239I
b = 0.151543 + 0.964779I
2.39825 + 2.03419I 2.27060 4.05066I
u = 0.626871 0.455302I
a = 1.027610 0.620239I
b = 0.151543 0.964779I
2.39825 2.03419I 2.27060 + 4.05066I
u = 0.500054 + 0.432744I
a = 1.58264 0.45958I
b = 0.429197 0.273799I
0.92587 + 4.11077I 5.01065 8.99779I
u = 0.500054 0.432744I
a = 1.58264 + 0.45958I
b = 0.429197 + 0.273799I
0.92587 4.11077I 5.01065 + 8.99779I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.037819 + 1.343840I
a = 0.297542 + 1.152810I
b = 0.056382 1.024380I
5.06538 + 2.73318I 0
u = 0.037819 1.343840I
a = 0.297542 1.152810I
b = 0.056382 + 1.024380I
5.06538 2.73318I 0
u = 0.07762 + 1.41592I
a = 0.839838 0.126193I
b = 0.589212 + 0.356243I
4.18150 1.91267I 0
u = 0.07762 1.41592I
a = 0.839838 + 0.126193I
b = 0.589212 0.356243I
4.18150 + 1.91267I 0
u = 0.04588 + 1.49852I
a = 0.286588 1.290620I
b = 0.01350 + 1.73889I
15.0633 3.0141I 0
u = 0.04588 1.49852I
a = 0.286588 + 1.290620I
b = 0.01350 1.73889I
15.0633 + 3.0141I 0
u = 0.04118 + 1.50695I
a = 0.857242 + 0.055781I
b = 0.641940 + 0.482037I
7.87180 2.16186I 0
u = 0.04118 1.50695I
a = 0.857242 0.055781I
b = 0.641940 0.482037I
7.87180 + 2.16186I 0
u = 0.20411 + 1.49822I
a = 0.995020 + 0.295616I
b = 0.332774 1.115340I
8.78560 + 5.06490I 0
u = 0.20411 1.49822I
a = 0.995020 0.295616I
b = 0.332774 + 1.115340I
8.78560 5.06490I 0
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.15926 + 1.50725I
a = 0.985140 0.130046I
b = 0.692157 + 0.316900I
7.37205 + 6.50901I 0
u = 0.15926 1.50725I
a = 0.985140 + 0.130046I
b = 0.692157 0.316900I
7.37205 6.50901I 0
u = 0.453530 + 0.155768I
a = 1.294160 0.225533I
b = 0.381984 0.104645I
0.863945 0.260084I 11.81001 + 2.51028I
u = 0.453530 0.155768I
a = 1.294160 + 0.225533I
b = 0.381984 + 0.104645I
0.863945 + 0.260084I 11.81001 2.51028I
u = 0.002331 + 0.475435I
a = 1.31229 1.31457I
b = 0.222613 0.360188I
1.29560 1.71128I 3.62337 0.57980I
u = 0.002331 0.475435I
a = 1.31229 + 1.31457I
b = 0.222613 + 0.360188I
1.29560 + 1.71128I 3.62337 + 0.57980I
u = 0.10985 + 1.56287I
a = 0.745097 + 0.121175I
b = 0.305737 1.232150I
13.35830 1.13064I 0
u = 0.10985 1.56287I
a = 0.745097 0.121175I
b = 0.305737 + 1.232150I
13.35830 + 1.13064I 0
u = 0.26983 + 1.54338I
a = 1.117940 + 0.149645I
b = 0.408507 1.113900I
11.8242 10.2576I 0
u = 0.26983 1.54338I
a = 1.117940 0.149645I
b = 0.408507 + 1.113900I
11.8242 + 10.2576I 0
8
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.28876 + 1.56911I
a = 1.116410 0.382260I
b = 0.08858 + 1.75569I
19.0611 6.8576I 0
u = 0.28876 1.56911I
a = 1.116410 + 0.382260I
b = 0.08858 1.75569I
19.0611 + 6.8576I 0
u = 0.36007 + 1.57989I
a = 1.221070 0.154749I
b = 0.11163 + 1.75687I
17.4391 + 12.4733I 0
u = 0.36007 1.57989I
a = 1.221070 + 0.154749I
b = 0.11163 1.75687I
17.4391 12.4733I 0
u = 0.329455 + 0.007485I
a = 2.30065 0.55846I
b = 0.177809 0.666151I
0.77656 1.82163I 4.80979 + 5.42360I
u = 0.329455 0.007485I
a = 2.30065 + 0.55846I
b = 0.177809 + 0.666151I
0.77656 + 1.82163I 4.80979 5.42360I
u = 0.22272 + 1.66105I
a = 0.730785 0.308803I
b = 0.06984 + 1.78630I
15.1658 + 2.7485I 0
u = 0.22272 1.66105I
a = 0.730785 + 0.308803I
b = 0.06984 1.78630I
15.1658 2.7485I 0
u = 0.186126 + 0.264782I
a = 2.72769 + 2.04868I
b = 0.01181 1.64054I
8.93133 2.25545I 4.66563 + 3.82510I
u = 0.186126 0.264782I
a = 2.72769 2.04868I
b = 0.01181 + 1.64054I
8.93133 + 2.25545I 4.66563 3.82510I
9
II. I
u
2
= hb
2
bu + 1, a
2
+ a + 1, u
2
+ 1i
(i) Arc colorings
a
5
=
1
0
a
9
=
0
u
a
4
=
1
1
a
10
=
u
0
a
1
=
a
b
a
3
=
0
1
a
8
=
au + u
bau + u
a
2
=
a
b + a
a
7
=
au
bu
a
12
=
b + a
b
a
6
=
ba + bu
bu + 1
a
11
=
bau + u
b u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4a 4
10
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
(u
2
u + 1)
4
c
2
, c
7
, c
8
(u
4
u
2
+ 1)
2
c
3
, c
4
, c
9
(u
2
+ 1)
4
c
5
, c
6
, c
10
c
11
, c
12
(u
4
+ 3u
2
+ 1)
2
11
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
(y
2
+ y + 1)
4
c
2
, c
7
, c
8
(y
2
y + 1)
4
c
3
, c
4
, c
9
(y + 1)
8
c
5
, c
6
, c
10
c
11
, c
12
(y
2
+ 3y + 1)
4
12
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 1.000000I
a = 0.500000 + 0.866025I
b = 0.618034I
2.63189 + 2.02988I 2.00000 3.46410I
u = 1.000000I
a = 0.500000 + 0.866025I
b = 1.61803I
10.52760 + 2.02988I 2.00000 3.46410I
u = 1.000000I
a = 0.500000 0.866025I
b = 0.618034I
2.63189 2.02988I 2.00000 + 3.46410I
u = 1.000000I
a = 0.500000 0.866025I
b = 1.61803I
10.52760 2.02988I 2.00000 + 3.46410I
u = 1.000000I
a = 0.500000 + 0.866025I
b = 0.618034I
2.63189 + 2.02988I 2.00000 3.46410I
u = 1.000000I
a = 0.500000 + 0.866025I
b = 1.61803I
10.52760 + 2.02988I 2.00000 3.46410I
u = 1.000000I
a = 0.500000 0.866025I
b = 0.618034I
2.63189 2.02988I 2.00000 + 3.46410I
u = 1.000000I
a = 0.500000 0.866025I
b = 1.61803I
10.52760 2.02988I 2.00000 + 3.46410I
13
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u
2
u + 1)
4
)(u
50
+ 27u
49
+ ··· + 131u + 25)
c
2
, c
7
((u
4
u
2
+ 1)
2
)(u
50
+ u
49
+ ··· + u + 5)
c
3
, c
4
, c
9
((u
2
+ 1)
4
)(u
50
+ u
49
+ ··· + 4u + 4)
c
5
, c
6
, c
10
c
11
, c
12
((u
4
+ 3u
2
+ 1)
2
)(u
50
u
49
+ ··· + 9u + 1)
c
8
((u
4
u
2
+ 1)
2
)(u
50
+ 3u
49
+ ··· + 519u + 345)
14
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y
2
+ y + 1)
4
)(y
50
3y
49
+ ··· + 89y + 625)
c
2
, c
7
((y
2
y + 1)
4
)(y
50
27y
49
+ ··· 131y + 25)
c
3
, c
4
, c
9
((y + 1)
8
)(y
50
+ 53y
49
+ ··· 8y + 16)
c
5
, c
6
, c
10
c
11
, c
12
((y
2
+ 3y + 1)
4
)(y
50
+ 69y
49
+ ··· 39y + 1)
c
8
((y
2
y + 1)
4
)(y
50
+ 33y
49
+ ··· 1916391y + 119025)
15