10
71
(K10a
10
)
A knot diagram
1
Linearized knot diagam
3 5 7 2 10 8 4 1 6 9
Solving Sequence
6,9
10 1
3,5
2 4 8 7
c
9
c
10
c
5
c
2
c
4
c
8
c
6
c
1
, c
3
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
27
+ 5u
25
+ ··· + b + u, u
39
u
38
+ ··· + a 4u, u
40
+ 2u
39
+ ··· + 4u
2
+ 1i
I
u
2
= hb + u + 1, a, u
2
+ u + 1i
* 2 irreducible components of dim
C
= 0, with total 42 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= hu
27
+5u
25
+· · ·+b+u, u
39
u
38
+· · ·+a4u, u
40
+2u
39
+· · ·+4u
2
+1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u
2
a
1
=
u
2
+ 1
u
2
a
3
=
u
39
+ u
38
+ ··· 5u
2
+ 4u
u
27
5u
25
+ ··· + 4u
2
u
a
5
=
u
u
3
+ u
a
2
=
u
21
+ 4u
19
+ ··· 4u
2
+ 3u
u
39
2u
38
+ ··· u 1
a
4
=
u
39
u
38
+ ··· + 3u 1
2u
39
4u
38
+ ··· 4u
2
2
a
8
=
u
4
+ u
2
+ 1
u
4
a
7
=
u
9
2u
7
3u
5
2u
3
u
u
9
u
7
u
5
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes
= u
39
+ 9u
38
+ 17u
37
+ 66u
36
+ 94u
35
+ 285u
34
+ 329u
33
+ 852u
32
+ 826u
31
+ 1962u
30
+
1576u
29
+3630u
28
+2362u
27
+5577u
26
+2755u
25
+7286u
24
+2421u
23
+8227u
22
+1323u
21
+
8198u
20
136u
19
+7289u
18
1361u
17
+5878u
16
1976u
15
+4322u
14
1882u
13
+2864u
12
1394u
11
+ 1700u
10
826u
9
+ 838u
8
385u
7
+ 329u
6
157u
5
+ 92u
4
42u
3
+ 7u
2
5u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
u
40
21u
39
+ ··· 3u + 1
c
2
, c
4
u
40
+ 3u
39
+ ··· + 3u + 1
c
3
, c
7
u
40
+ u
39
+ ··· 8u + 4
c
5
, c
9
u
40
2u
39
+ ··· + 4u
2
+ 1
c
6
u
40
+ 15u
39
+ ··· + 120u + 16
c
8
, c
10
u
40
14u
39
+ ··· 8u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
y
40
y
39
+ ··· + 17y + 1
c
2
, c
4
y
40
21y
39
+ ··· 3y + 1
c
3
, c
7
y
40
15y
39
+ ··· 120y + 16
c
5
, c
9
y
40
+ 14y
39
+ ··· + 8y + 1
c
6
y
40
+ 17y
39
+ ··· + 2016y + 256
c
8
, c
10
y
40
+ 26y
39
+ ··· + 44y + 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.725993 + 0.653238I
a = 1.77855 + 1.81598I
b = 2.56295 0.04821I
0.63968 + 1.74616I 0.044303 1.257582I
u = 0.725993 0.653238I
a = 1.77855 1.81598I
b = 2.56295 + 0.04821I
0.63968 1.74616I 0.044303 + 1.257582I
u = 0.657117 + 0.787048I
a = 1.66831 + 0.40061I
b = 0.89334 + 1.41707I
1.07354 2.17702I 2.16670 + 4.43587I
u = 0.657117 0.787048I
a = 1.66831 0.40061I
b = 0.89334 1.41707I
1.07354 + 2.17702I 2.16670 4.43587I
u = 0.096376 + 1.028080I
a = 0.442341 + 0.052565I
b = 0.722317 + 0.146557I
2.32493 2.41163I 2.33571 + 3.34704I
u = 0.096376 1.028080I
a = 0.442341 0.052565I
b = 0.722317 0.146557I
2.32493 + 2.41163I 2.33571 3.34704I
u = 0.824710 + 0.626683I
a = 1.67414 1.41541I
b = 2.39518 + 0.13829I
1.20323 7.65538I 1.63964 + 4.86252I
u = 0.824710 0.626683I
a = 1.67414 + 1.41541I
b = 2.39518 0.13829I
1.20323 + 7.65538I 1.63964 4.86252I
u = 0.789408 + 0.675423I
a = 1.235380 + 0.007261I
b = 1.156310 0.509552I
3.72005 2.44717I 4.96365 + 1.04542I
u = 0.789408 0.675423I
a = 1.235380 0.007261I
b = 1.156310 + 0.509552I
3.72005 + 2.44717I 4.96365 1.04542I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.386153 + 0.965172I
a = 0.238506 + 0.455641I
b = 0.397991 + 0.639039I
0.74845 2.81821I 1.95524 + 6.55211I
u = 0.386153 0.965172I
a = 0.238506 0.455641I
b = 0.397991 0.639039I
0.74845 + 2.81821I 1.95524 6.55211I
u = 0.023616 + 1.041760I
a = 1.087150 0.838239I
b = 0.393277 1.005930I
6.00686 + 1.32070I 7.28134 0.72610I
u = 0.023616 1.041760I
a = 1.087150 + 0.838239I
b = 0.393277 + 1.005930I
6.00686 1.32070I 7.28134 + 0.72610I
u = 0.650732 + 0.672523I
a = 0.172779 + 0.250083I
b = 0.359504 0.987978I
1.25887 + 0.68759I 0.543601 + 0.759704I
u = 0.650732 0.672523I
a = 0.172779 0.250083I
b = 0.359504 + 0.987978I
1.25887 0.68759I 0.543601 0.759704I
u = 0.095598 + 1.116440I
a = 0.834103 + 0.849030I
b = 0.370183 + 0.684126I
5.21580 6.90989I 5.24227 + 6.39245I
u = 0.095598 1.116440I
a = 0.834103 0.849030I
b = 0.370183 0.684126I
5.21580 + 6.90989I 5.24227 6.39245I
u = 0.639866 + 0.934630I
a = 0.19632 + 1.43499I
b = 1.28155 + 0.60102I
0.60920 2.86826I 1.22261 + 1.95241I
u = 0.639866 0.934630I
a = 0.19632 1.43499I
b = 1.28155 0.60102I
0.60920 + 2.86826I 1.22261 1.95241I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.777168 + 0.837928I
a = 0.91272 1.60741I
b = 2.00597 0.19942I
6.21108 + 0.22925I 5.84725 + 0.24543I
u = 0.777168 0.837928I
a = 0.91272 + 1.60741I
b = 2.00597 + 0.19942I
6.21108 0.22925I 5.84725 0.24543I
u = 0.762796 + 0.899428I
a = 1.74060 + 0.53261I
b = 2.07413 1.05941I
6.02457 + 5.56367I 5.18066 6.01609I
u = 0.762796 0.899428I
a = 1.74060 0.53261I
b = 2.07413 + 1.05941I
6.02457 5.56367I 5.18066 + 6.01609I
u = 0.651476 + 0.987984I
a = 0.197553 + 0.008658I
b = 0.673463 1.012420I
2.21178 + 4.43619I 1.72906 5.48285I
u = 0.651476 0.987984I
a = 0.197553 0.008658I
b = 0.673463 + 1.012420I
2.21178 4.43619I 1.72906 + 5.48285I
u = 0.559538 + 1.043730I
a = 0.204110 + 0.051194I
b = 0.743272 + 0.884629I
2.37466 + 0.03317I 2.30074 1.92960I
u = 0.559538 1.043730I
a = 0.204110 0.051194I
b = 0.743272 0.884629I
2.37466 0.03317I 2.30074 + 1.92960I
u = 0.674430 + 1.003370I
a = 1.99901 1.47152I
b = 3.05304 + 1.06309I
1.68055 7.12390I 1.84913 + 6.13601I
u = 0.674430 1.003370I
a = 1.99901 + 1.47152I
b = 3.05304 1.06309I
1.68055 + 7.12390I 1.84913 6.13601I
7
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.710235 + 0.337827I
a = 0.496293 0.392962I
b = 0.069099 + 0.837495I
0.39800 4.72692I 1.63267 + 6.05913I
u = 0.710235 0.337827I
a = 0.496293 + 0.392962I
b = 0.069099 0.837495I
0.39800 + 4.72692I 1.63267 6.05913I
u = 0.705098 + 1.010600I
a = 0.462757 1.241560I
b = 1.290960 0.160212I
2.70648 + 8.09252I 2.94350 6.08172I
u = 0.705098 1.010600I
a = 0.462757 + 1.241560I
b = 1.290960 + 0.160212I
2.70648 8.09252I 2.94350 + 6.08172I
u = 0.703890 + 1.042830I
a = 1.61753 + 1.43395I
b = 2.91214 0.75501I
0.05370 + 13.38520I 0.42075 9.35928I
u = 0.703890 1.042830I
a = 1.61753 1.43395I
b = 2.91214 + 0.75501I
0.05370 13.38520I 0.42075 + 9.35928I
u = 0.566007 + 0.177460I
a = 0.944370 + 0.216688I
b = 0.239645 0.184623I
1.47568 0.52119I 6.28438 + 0.91978I
u = 0.566007 0.177460I
a = 0.944370 0.216688I
b = 0.239645 + 0.184623I
1.47568 + 0.52119I 6.28438 0.91978I
u = 0.222419 + 0.359701I
a = 0.03404 + 1.68269I
b = 0.589808 0.653481I
1.75548 + 0.68997I 4.17661 + 0.16492I
u = 0.222419 0.359701I
a = 0.03404 1.68269I
b = 0.589808 + 0.653481I
1.75548 0.68997I 4.17661 0.16492I
8
II. I
u
2
= hb + u + 1, a, u
2
+ u + 1i
(i) Arc colorings
a
6
=
0
u
a
9
=
1
0
a
10
=
1
u 1
a
1
=
u
u 1
a
3
=
0
u 1
a
5
=
u
u + 1
a
2
=
u
2u 2
a
4
=
0
u 1
a
8
=
0
u
a
7
=
0
u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u + 1
9
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
2
(u + 1)
2
c
3
, c
6
, c
7
u
2
c
4
(u 1)
2
c
5
, c
10
u
2
u + 1
c
8
, c
9
u
2
+ u + 1
10
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
2
, c
4
(y 1)
2
c
3
, c
6
, c
7
y
2
c
5
, c
8
, c
9
c
10
y
2
+ y + 1
11
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.500000 + 0.866025I
a = 0
b = 0.500000 0.866025I
1.64493 + 2.02988I 3.00000 3.46410I
u = 0.500000 0.866025I
a = 0
b = 0.500000 + 0.866025I
1.64493 2.02988I 3.00000 + 3.46410I
12
III. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
((u + 1)
2
)(u
40
21u
39
+ ··· 3u + 1)
c
2
((u + 1)
2
)(u
40
+ 3u
39
+ ··· + 3u + 1)
c
3
, c
7
u
2
(u
40
+ u
39
+ ··· 8u + 4)
c
4
((u 1)
2
)(u
40
+ 3u
39
+ ··· + 3u + 1)
c
5
(u
2
u + 1)(u
40
2u
39
+ ··· + 4u
2
+ 1)
c
6
u
2
(u
40
+ 15u
39
+ ··· + 120u + 16)
c
8
(u
2
+ u + 1)(u
40
14u
39
+ ··· 8u + 1)
c
9
(u
2
+ u + 1)(u
40
2u
39
+ ··· + 4u
2
+ 1)
c
10
(u
2
u + 1)(u
40
14u
39
+ ··· 8u + 1)
13
IV. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
((y 1)
2
)(y
40
y
39
+ ··· + 17y + 1)
c
2
, c
4
((y 1)
2
)(y
40
21y
39
+ ··· 3y + 1)
c
3
, c
7
y
2
(y
40
15y
39
+ ··· 120y + 16)
c
5
, c
9
(y
2
+ y + 1)(y
40
+ 14y
39
+ ··· + 8y + 1)
c
6
y
2
(y
40
+ 17y
39
+ ··· + 2016y + 256)
c
8
, c
10
(y
2
+ y + 1)(y
40
+ 26y
39
+ ··· + 44y + 1)
14