12a
0759
(K12a
0759
)
A knot diagram
1
Linearized knot diagam
3 8 10 11 12 9 2 7 1 4 5 6
Solving Sequence
2,7
8 3 9 1 10 4 6 12 5 11
c
7
c
2
c
8
c
1
c
9
c
3
c
6
c
12
c
5
c
11
c
4
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= hu
30
u
29
+ ··· u 1i
* 1 irreducible components of dim
C
= 0, with total 30 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
30
u
29
+ · · · u 1i
(i) Arc colorings
a
2
=
0
u
a
7
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
9
=
u
2
+ 1
u
2
a
1
=
u
3
u
5
u
3
+ u
a
10
=
u
10
u
8
+ 2u
6
u
4
u
2
+ 1
u
12
2u
10
+ 4u
8
4u
6
+ 3u
4
a
4
=
u
19
2u
17
+ 6u
15
8u
13
+ 9u
11
6u
9
+ 4u
5
3u
3
u
21
3u
19
+ 9u
17
16u
15
+ 24u
13
25u
11
+ 21u
9
10u
7
+ 3u
5
u
3
+ u
a
6
=
u
4
u
2
+ 1
u
4
a
12
=
u
13
+ 2u
11
5u
9
+ 6u
7
6u
5
+ 4u
3
u
u
13
u
11
+ 3u
9
2u
7
+ 2u
5
u
3
+ u
a
5
=
u
22
+ 3u
20
+ ··· 2u
2
+ 1
u
22
2u
20
+ ··· 4u
4
+ u
2
a
11
=
u
28
+ 3u
26
+ ··· u
2
+ 1
u
29
+ u
28
+ ··· u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
29
+ 16u
27
4u
26
60u
25
+ 12u
24
+ 148u
23
44u
22
304u
21
+ 88u
20
+ 508u
19
160u
18
692u
17
+ 212u
16
+ 796u
15
224u
14
736u
13
+
168u
12
+ 568u
11
80u
10
344u
9
+ 180u
7
+ 24u
6
84u
5
+ 32u
3
8u
2
12u + 6
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u
30
+ 7u
29
+ ··· + 5u + 1
c
2
, c
7
u
30
+ u
29
+ ··· + u 1
c
3
, c
4
, c
5
c
10
, c
11
, c
12
u
30
+ u
29
+ ··· u 1
c
9
u
30
7u
29
+ ··· + 521u 295
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
y
30
+ 33y
29
+ ··· + 39y + 1
c
2
, c
7
y
30
7y
29
+ ··· 5y + 1
c
3
, c
4
, c
5
c
10
, c
11
, c
12
y
30
43y
29
+ ··· 5y + 1
c
9
y
30
23y
29
+ ··· 1109241y + 87025
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.920005 + 0.430378I
4.66034 4.78463I 7.25047 + 6.81855I
u = 0.920005 0.430378I
4.66034 + 4.78463I 7.25047 6.81855I
u = 0.979433
12.9125 3.79610
u = 0.968807 + 0.456896I
15.5155 + 5.5117I 7.63592 5.51087I
u = 0.968807 0.456896I
15.5155 5.5117I 7.63592 + 5.51087I
u = 0.850370 + 0.353923I
0.53732 + 3.17807I 2.96134 9.77982I
u = 0.850370 0.353923I
0.53732 3.17807I 2.96134 + 9.77982I
u = 0.895297
2.40603 3.06770
u = 0.782312 + 0.234321I
1.26656 0.80671I 2.39136 + 0.48620I
u = 0.782312 0.234321I
1.26656 + 0.80671I 2.39136 0.48620I
u = 0.873425 + 0.850032I
6.78596 0.15290I 9.21207 2.20813I
u = 0.873425 0.850032I
6.78596 + 0.15290I 9.21207 + 2.20813I
u = 0.353083 + 0.696158I
17.4896 1.3046I 12.03831 + 0.06444I
u = 0.353083 0.696158I
17.4896 + 1.3046I 12.03831 0.06444I
u = 0.902387 + 0.826249I
4.85853 + 3.08395I 4.14772 2.46951I
u = 0.902387 0.826249I
4.85853 3.08395I 4.14772 + 2.46951I
u = 0.858968 + 0.882764I
12.99360 1.81516I 11.64969 + 0.86495I
u = 0.858968 0.882764I
12.99360 + 1.81516I 11.64969 0.86495I
u = 0.853261 + 0.904188I
15.0818 + 2.8449I 11.96540 0.16863I
u = 0.853261 0.904188I
15.0818 2.8449I 11.96540 + 0.16863I
u = 0.935818 + 0.828568I
6.59163 6.09371I 8.55797 + 7.37822I
u = 0.935818 0.828568I
6.59163 + 6.09371I 8.55797 7.37822I
u = 0.962584 + 0.839703I
12.6661 + 8.1956I 11.00485 5.80701I
u = 0.962584 0.839703I
12.6661 8.1956I 11.00485 + 5.80701I
u = 0.355798 + 0.609144I
6.41234 + 0.93846I 12.13091 0.39281I
u = 0.355798 0.609144I
6.41234 0.93846I 12.13091 + 0.39281I
u = 0.978792 + 0.847377I
15.4823 9.3158I 11.28938 + 4.91125I
u = 0.978792 0.847377I
15.4823 + 9.3158I 11.28938 4.91125I
u = 0.345278 + 0.364509I
0.887471 0.222734I 11.11542 + 1.64999I
u = 0.345278 0.364509I
0.887471 + 0.222734I 11.11542 1.64999I
5
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u
30
+ 7u
29
+ ··· + 5u + 1
c
2
, c
7
u
30
+ u
29
+ ··· + u 1
c
3
, c
4
, c
5
c
10
, c
11
, c
12
u
30
+ u
29
+ ··· u 1
c
9
u
30
7u
29
+ ··· + 521u 295
6
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
y
30
+ 33y
29
+ ··· + 39y + 1
c
2
, c
7
y
30
7y
29
+ ··· 5y + 1
c
3
, c
4
, c
5
c
10
, c
11
, c
12
y
30
43y
29
+ ··· 5y + 1
c
9
y
30
23y
29
+ ··· 1109241y + 87025
7