12a
0760
(K12a
0760
)
A knot diagram
1
Linearized knot diagam
3 8 10 11 12 9 2 7 1 4 6 5
Solving Sequence
6,11
12 5 1 4 10 3 2 9 7 8
c
11
c
5
c
12
c
4
c
10
c
3
c
1
c
9
c
6
c
8
c
2
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
55
u
54
+ ··· + 2u
2
1i
* 1 irreducible components of dim
C
= 0, with total 55 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
55
u
54
+ · · · + 2u
2
1i
(i) Arc colorings
a
6
=
0
u
a
11
=
1
0
a
12
=
1
u
2
a
5
=
u
u
3
+ u
a
1
=
u
2
+ 1
u
4
2u
2
a
4
=
u
3
2u
u
3
+ u
a
10
=
u
6
3u
4
2u
2
+ 1
u
6
+ 2u
4
+ u
2
a
3
=
u
9
+ 4u
7
+ 5u
5
3u
u
9
3u
7
3u
5
+ u
a
2
=
u
22
+ 9u
20
+ ··· 2u
2
+ 1
u
22
8u
20
+ ··· 6u
4
u
2
a
9
=
u
12
+ 5u
10
+ 9u
8
+ 4u
6
6u
4
5u
2
+ 1
u
14
6u
12
13u
10
10u
8
+ 4u
6
+ 8u
4
+ u
2
a
7
=
u
25
10u
23
+ ··· + 10u
3
u
u
27
+ 11u
25
+ ··· u
3
+ u
a
8
=
u
38
+ 15u
36
+ ··· 4u
2
+ 1
u
40
16u
38
+ ··· + 8u
6
+ 14u
4
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
54
4u
53
+ ··· + 16u + 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u
55
+ 13u
54
+ ··· + 4u + 1
c
2
, c
7
u
55
+ u
54
+ ··· + 2u
2
1
c
3
, c
4
, c
10
u
55
+ u
54
+ ··· 11u 2
c
5
, c
11
, c
12
u
55
u
54
+ ··· + 2u
2
1
c
9
u
55
7u
54
+ ··· 20988u + 4921
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
y
55
+ 59y
54
+ ··· 36y 1
c
2
, c
7
y
55
13y
54
+ ··· + 4y 1
c
3
, c
4
, c
10
y
55
57y
54
+ ··· 91y 4
c
5
, c
11
, c
12
y
55
+ 43y
54
+ ··· + 4y 1
c
9
y
55
29y
54
+ ··· + 402466656y 24216241
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.886995 + 0.045862I
14.3413 2.3988I 10.05032 + 0.51244I
u = 0.886995 0.045862I
14.3413 + 2.3988I 10.05032 0.51244I
u = 0.885350 + 0.051007I
13.9632 + 8.8219I 9.36443 5.35751I
u = 0.885350 0.051007I
13.9632 8.8219I 9.36443 + 5.35751I
u = 0.864228 + 0.018685I
7.62020 1.13554I 10.36949 + 0.23646I
u = 0.864228 0.018685I
7.62020 + 1.13554I 10.36949 0.23646I
u = 0.079677 + 1.134880I
1.86120 + 1.73369I 0. 4.71715I
u = 0.079677 1.134880I
1.86120 1.73369I 0. + 4.71715I
u = 0.856539 + 0.039628I
5.73343 + 5.16675I 5.71941 6.13440I
u = 0.856539 0.039628I
5.73343 5.16675I 5.71941 + 6.13440I
u = 0.124104 + 0.821653I
5.01486 + 3.10577I 5.36912 3.19461I
u = 0.124104 0.821653I
5.01486 3.10577I 5.36912 + 3.19461I
u = 0.830617
3.31017 1.79020
u = 0.134449 + 0.719876I
4.98402 + 3.12049I 4.83515 1.88613I
u = 0.134449 0.719876I
4.98402 3.12049I 4.83515 + 1.88613I
u = 0.140602 + 1.264520I
3.20902 + 2.28111I 0
u = 0.140602 1.264520I
3.20902 2.28111I 0
u = 0.398432 + 1.236750I
2.03590 0.66546I 0
u = 0.398432 1.236750I
2.03590 + 0.66546I 0
u = 0.431188 + 1.231470I
10.32020 4.11571I 0
u = 0.431188 1.231470I
10.32020 + 4.11571I 0
u = 0.091117 + 1.302380I
6.13952 0.32984I 0
u = 0.091117 1.302380I
6.13952 + 0.32984I 0
u = 0.431390 + 1.236960I
10.66320 2.31354I 0
u = 0.431390 1.236960I
10.66320 + 2.31354I 0
u = 0.151057 + 1.311240I
5.41307 5.33764I 0
u = 0.151057 1.311240I
5.41307 + 5.33764I 0
u = 0.404078 + 1.258270I
3.77988 3.40970I 0
u = 0.404078 1.258270I
3.77988 + 3.40970I 0
u = 0.010529 + 1.328650I
0.68155 + 2.96620I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.010529 1.328650I
0.68155 2.96620I 0
u = 0.375169 + 1.274910I
0.65198 + 4.33276I 0
u = 0.375169 1.274910I
0.65198 4.33276I 0
u = 0.207095 + 1.316430I
1.91268 + 2.83669I 0
u = 0.207095 1.316430I
1.91268 2.83669I 0
u = 0.199631 + 1.326110I
1.57882 9.00165I 0
u = 0.199631 1.326110I
1.57882 + 9.00165I 0
u = 0.399305 + 1.288770I
3.55054 5.66585I 0
u = 0.399305 1.288770I
3.55054 + 5.66585I 0
u = 0.391698 + 1.302460I
1.54641 + 9.64694I 0
u = 0.391698 1.302460I
1.54641 9.64694I 0
u = 0.577636 + 0.255967I
6.50085 6.27951I 7.73444 + 7.40899I
u = 0.577636 0.255967I
6.50085 + 6.27951I 7.73444 7.40899I
u = 0.585657 + 0.234755I
6.72459 + 0.04895I 8.43887 2.19191I
u = 0.585657 0.234755I
6.72459 0.04895I 8.43887 + 2.19191I
u = 0.410657 + 1.311660I
10.10380 7.04613I 0
u = 0.410657 1.311660I
10.10380 + 7.04613I 0
u = 0.408466 + 1.314810I
9.6974 + 13.4566I 0
u = 0.408466 1.314810I
9.6974 13.4566I 0
u = 0.449466 + 0.260084I
0.59638 3.23489I 2.34241 + 9.68420I
u = 0.449466 0.260084I
0.59638 + 3.23489I 2.34241 9.68420I
u = 0.435627 + 0.099986I
0.914015 + 0.263108I 10.61137 1.72545I
u = 0.435627 0.099986I
0.914015 0.263108I 10.61137 + 1.72545I
u = 0.224373 + 0.350383I
1.27930 + 0.82968I 2.41349 0.37291I
u = 0.224373 0.350383I
1.27930 0.82968I 2.41349 + 0.37291I
6
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u
55
+ 13u
54
+ ··· + 4u + 1
c
2
, c
7
u
55
+ u
54
+ ··· + 2u
2
1
c
3
, c
4
, c
10
u
55
+ u
54
+ ··· 11u 2
c
5
, c
11
, c
12
u
55
u
54
+ ··· + 2u
2
1
c
9
u
55
7u
54
+ ··· 20988u + 4921
7
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
y
55
+ 59y
54
+ ··· 36y 1
c
2
, c
7
y
55
13y
54
+ ··· + 4y 1
c
3
, c
4
, c
10
y
55
57y
54
+ ··· 91y 4
c
5
, c
11
, c
12
y
55
+ 43y
54
+ ··· + 4y 1
c
9
y
55
29y
54
+ ··· + 402466656y 24216241
8