12a
0761
(K12a
0761
)
A knot diagram
1
Linearized knot diagam
3 8 10 11 12 9 2 7 1 6 5 4
Solving Sequence
6,12
5 11 4 1 10 3 2 9 7 8
c
5
c
11
c
4
c
12
c
10
c
3
c
1
c
9
c
6
c
8
c
2
, c
7
Ideals for irreducible components
2
of X
par
I
u
1
= hu
69
+ u
68
+ ··· u + 1i
* 1 irreducible components of dim
C
= 0, with total 69 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I. I
u
1
= hu
69
+ u
68
+ · · · u + 1i
(i) Arc colorings
a
6
=
1
0
a
12
=
0
u
a
5
=
1
u
2
a
11
=
u
u
3
+ u
a
4
=
u
2
+ 1
u
4
+ 2u
2
a
1
=
u
5
2u
3
+ u
u
7
3u
5
+ 2u
3
+ u
a
10
=
u
3
2u
u
3
+ u
a
3
=
u
10
5u
8
+ 8u
6
3u
4
3u
2
+ 1
u
10
+ 4u
8
5u
6
+ 3u
2
a
2
=
u
27
+ 12u
25
+ ··· 2u
5
+ 5u
3
u
27
11u
25
+ ··· u
3
+ u
a
9
=
u
15
6u
13
+ 14u
11
14u
9
+ 2u
7
+ 6u
5
2u
3
2u
u
17
7u
15
+ 19u
13
22u
11
+ 3u
9
+ 14u
7
6u
5
4u
3
+ u
a
7
=
u
32
13u
30
+ ··· 2u
2
+ 1
u
34
14u
32
+ ··· 8u
4
+ u
2
a
8
=
u
49
20u
47
+ ··· 8u
3
u
u
51
21u
49
+ ··· 3u
3
+ u
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
66
+ 108u
64
+ ··· 12u 2
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u
69
+ 17u
68
+ ··· + 3u + 1
c
2
, c
7
u
69
+ u
68
+ ··· + u 1
c
3
u
69
+ u
68
+ ··· 129u 137
c
4
, c
5
, c
11
u
69
u
68
+ ··· u 1
c
9
u
69
7u
68
+ ··· u + 1
c
10
, c
12
u
69
+ 3u
68
+ ··· + 137u + 39
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
y
69
+ 71y
68
+ ··· 29y 1
c
2
, c
7
y
69
17y
68
+ ··· + 3y 1
c
3
y
69
13y
68
+ ··· + 104047y 18769
c
4
, c
5
, c
11
y
69
57y
68
+ ··· + 3y 1
c
9
y
69
y
68
+ ··· 237y 1
c
10
, c
12
y
69
+ 43y
68
+ ··· + 12139y 1521
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.092180 + 0.321855I
5.91460 + 0.32154I 0
u = 1.092180 0.321855I
5.91460 0.32154I 0
u = 1.096740 + 0.333708I
5.47967 6.53917I 0
u = 1.096740 0.333708I
5.47967 + 6.53917I 0
u = 0.138165 + 0.798793I
2.56851 + 10.69340I 1.65374 7.70378I
u = 0.138165 0.798793I
2.56851 10.69340I 1.65374 + 7.70378I
u = 1.145410 + 0.328636I
1.73469 2.50512I 0
u = 1.145410 0.328636I
1.73469 + 2.50512I 0
u = 0.140078 + 0.792908I
3.02805 4.42671I 2.55261 + 2.89150I
u = 0.140078 0.792908I
3.02805 + 4.42671I 2.55261 2.89150I
u = 0.110756 + 0.793388I
4.87332 + 6.59799I 3.56404 7.84229I
u = 0.110756 0.793388I
4.87332 6.59799I 3.56404 + 7.84229I
u = 1.166290 + 0.294481I
0.672378 0.761865I 0
u = 1.166290 0.294481I
0.672378 + 0.761865I 0
u = 0.012224 + 0.791415I
0.94544 2.84281I 1.00503 + 2.82836I
u = 0.012224 0.791415I
0.94544 + 2.84281I 1.00503 2.82836I
u = 0.074603 + 0.785868I
5.96794 + 1.10890I 6.58754 0.13737I
u = 0.074603 0.785868I
5.96794 1.10890I 6.58754 + 0.13737I
u = 0.106193 + 0.769108I
2.51716 3.12629I 2.15915 + 3.27567I
u = 0.106193 0.769108I
2.51716 + 3.12629I 2.15915 3.27567I
u = 1.193520 + 0.331076I
2.55117 + 2.93757I 0
u = 1.193520 0.331076I
2.55117 2.93757I 0
u = 1.245240 + 0.345004I
2.86320 + 6.94117I 0
u = 1.245240 0.345004I
2.86320 6.94117I 0
u = 1.30108
2.90585 0
u = 1.277260 + 0.264440I
2.55105 1.50715I 0
u = 1.277260 0.264440I
2.55105 + 1.50715I 0
u = 0.070446 + 0.690883I
1.19123 1.83777I 2.28274 + 4.57123I
u = 0.070446 0.690883I
1.19123 + 1.83777I 2.28274 4.57123I
u = 1.264530 + 0.340025I
3.01410 1.23373I 0
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.264530 0.340025I
3.01410 + 1.23373I 0
u = 0.603470 + 0.301354I
6.73153 0.61716I 7.13438 + 2.10966I
u = 0.603470 0.301354I
6.73153 + 0.61716I 7.13438 2.10966I
u = 0.589520 + 0.321708I
6.41855 + 6.84674I 6.30902 7.28330I
u = 0.589520 0.321708I
6.41855 6.84674I 6.30902 + 7.28330I
u = 1.318830 + 0.298622I
3.18430 + 5.45567I 0
u = 1.318830 0.298622I
3.18430 5.45567I 0
u = 1.315810 + 0.338996I
1.61288 5.16596I 0
u = 1.315810 0.338996I
1.61288 + 5.16596I 0
u = 1.362700 + 0.054216I
4.88257 4.45827I 0
u = 1.362700 0.054216I
4.88257 + 4.45827I 0
u = 0.215382 + 0.597701I
5.40705 2.59249I 4.08361 + 4.36083I
u = 0.215382 0.597701I
5.40705 + 2.59249I 4.08361 4.36083I
u = 1.365400 + 0.023049I
6.60295 + 0.80819I 0
u = 1.365400 0.023049I
6.60295 0.80819I 0
u = 1.346740 + 0.250330I
10.10940 + 0.56737I 0
u = 1.346740 0.250330I
10.10940 0.56737I 0
u = 1.348030 + 0.257995I
10.26320 + 5.75336I 0
u = 1.348030 0.257995I
10.26320 5.75336I 0
u = 1.333890 + 0.330249I
2.00995 + 7.10245I 0
u = 1.333890 0.330249I
2.00995 7.10245I 0
u = 0.231821 + 0.578390I
5.22939 3.62581I 3.68752 + 0.72835I
u = 0.231821 0.578390I
5.22939 + 3.62581I 3.68752 0.72835I
u = 1.337180 + 0.342771I
0.32289 10.69870I 0
u = 1.337180 0.342771I
0.32289 + 10.69870I 0
u = 1.352750 + 0.339947I
7.73069 + 8.51857I 0
u = 1.352750 0.339947I
7.73069 8.51857I 0
u = 1.352500 + 0.343185I
7.2637 14.8161I 0
u = 1.352500 0.343185I
7.2637 + 14.8161I 0
u = 1.398340 + 0.054036I
12.5949 7.8659I 0
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 1.398340 0.054036I
12.5949 + 7.8659I 0
u = 1.398680 + 0.048186I
12.92990 + 1.53899I 0
u = 1.398680 0.048186I
12.92990 1.53899I 0
u = 0.462955 + 0.294667I
0.73130 + 3.44818I 1.19909 9.10721I
u = 0.462955 0.294667I
0.73130 3.44818I 1.19909 + 9.10721I
u = 0.465435 + 0.129552I
0.992427 0.375285I 9.31448 + 1.85856I
u = 0.465435 0.129552I
0.992427 + 0.375285I 9.31448 1.85856I
u = 0.246534 + 0.364424I
1.34874 0.90520I 2.53630 + 0.15595I
u = 0.246534 0.364424I
1.34874 + 0.90520I 2.53630 0.15595I
7
II. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
6
, c
8
u
69
+ 17u
68
+ ··· + 3u + 1
c
2
, c
7
u
69
+ u
68
+ ··· + u 1
c
3
u
69
+ u
68
+ ··· 129u 137
c
4
, c
5
, c
11
u
69
u
68
+ ··· u 1
c
9
u
69
7u
68
+ ··· u + 1
c
10
, c
12
u
69
+ 3u
68
+ ··· + 137u + 39
8
III. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
6
, c
8
y
69
+ 71y
68
+ ··· 29y 1
c
2
, c
7
y
69
17y
68
+ ··· + 3y 1
c
3
y
69
13y
68
+ ··· + 104047y 18769
c
4
, c
5
, c
11
y
69
57y
68
+ ··· + 3y 1
c
9
y
69
y
68
+ ··· 237y 1
c
10
, c
12
y
69
+ 43y
68
+ ··· + 12139y 1521
9