12a
0767
(K12a
0767
)
A knot diagram
1
Linearized knot diagam
3 8 10 11 1 12 9 2 7 5 4 6
Solving Sequence
2,9
8 3
1,6
5 7 10 4 12 11
c
8
c
2
c
1
c
5
c
7
c
9
c
3
c
12
c
11
c
4
, c
6
, c
10
Ideals for irreducible components
2
of X
par
I
u
1
= h2u
25
+ 3u
24
+ ··· + b 3, 3u
26
+ 9u
25
+ ··· + 2a 9, u
27
+ 3u
26
+ ··· + u 2i
I
u
2
= h21u
19
a + 223u
19
+ ··· 81a 318, 2u
19
a + u
19
+ ··· + a
2
3, u
20
u
19
+ ··· + u
2
+ 1i
I
u
3
= h−u
5
+ b u, u
4
u
2
+ a + u 2, u
6
+ u
4
+ 2u
2
+ 1i
* 3 irreducible components of dim
C
= 0, with total 73 representations.
1
The image of knot diagram is generated by the software Draw programme developed by An-
drew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modi-
fied some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).
2
All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated
in decimal forms when there is not enough margin.
1
I.
I
u
1
= h2u
25
+3u
24
+· · ·+b3, 3u
26
+9u
25
+· · ·+2a9, u
27
+3u
26
+· · ·+u2i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
6
=
3
2
u
26
9
2
u
25
+ ··· 4u +
9
2
2u
25
3u
24
+ ··· 5u + 3
a
5
=
7
2
u
26
21
2
u
25
+ ··· 8u +
17
2
5u
25
7u
24
+ ··· 12u + 7
a
7
=
u
2
+ 1
u
2
a
10
=
u
4
+ u
2
+ 1
u
4
a
4
=
u
11
2u
9
4u
7
4u
5
3u
3
u
11
u
9
2u
7
u
5
+ u
3
+ u
a
12
=
3
2
u
26
5
2
u
25
+ ··· + 2u +
1
2
u
26
2u
25
+ ··· + u + 1
a
11
=
1
2
u
26
+
1
2
u
25
+ ··· +
1
2
u
2
+
1
2
u
26
+ 2u
25
+ ··· + u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
26
10u
25
26u
24
38u
23
78u
22
106u
21
180u
20
202u
19
298u
18
286u
17
366u
16
274u
15
332u
14
172u
13
200u
12
10u
11
70u
10
+ 84u
9
18u
8
+ 58u
7
62u
6
+ 10u
5
52u
4
+ 6u
3
18u
2
+ 14u 10
2
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
u
27
+ 7u
26
+ ··· 7u 4
c
2
, c
8
u
27
3u
26
+ ··· + u + 2
c
3
u
27
3u
26
+ ··· + 192u + 128
c
4
, c
5
, c
6
c
10
, c
11
, c
12
u
27
+ 15u
25
+ ··· + 3u + 1
3
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
y
27
+ 27y
26
+ ··· + 385y 16
c
2
, c
8
y
27
+ 7y
26
+ ··· 7y 4
c
3
y
27
+ y
26
+ ··· 323584y 16384
c
4
, c
5
, c
6
c
10
, c
11
, c
12
y
27
+ 30y
26
+ ··· 7y 1
4
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.277460 + 0.929850I
a = 0.226509 + 0.100294I
b = 0.350781 + 0.505562I
3.57952 + 2.60716I 14.9352 5.3810I
u = 0.277460 0.929850I
a = 0.226509 0.100294I
b = 0.350781 0.505562I
3.57952 2.60716I 14.9352 + 5.3810I
u = 0.126747 + 1.039010I
a = 1.75601 + 0.00499I
b = 0.485752 + 0.316127I
4.48046 3.61631I 5.50483 + 2.14074I
u = 0.126747 1.039010I
a = 1.75601 0.00499I
b = 0.485752 0.316127I
4.48046 + 3.61631I 5.50483 2.14074I
u = 0.752094 + 0.565194I
a = 0.248696 + 0.216030I
b = 1.22743 + 0.73470I
10.36450 3.20982I 1.89568 + 3.18066I
u = 0.752094 0.565194I
a = 0.248696 0.216030I
b = 1.22743 0.73470I
10.36450 + 3.20982I 1.89568 3.18066I
u = 0.387921 + 1.022180I
a = 0.396664 + 1.123690I
b = 0.35306 1.73889I
6.03730 + 9.94630I 4.12408 8.16397I
u = 0.387921 1.022180I
a = 0.396664 1.123690I
b = 0.35306 + 1.73889I
6.03730 9.94630I 4.12408 + 8.16397I
u = 0.827337 + 0.833435I
a = 0.269864 1.251390I
b = 0.725756 0.997287I
3.30382 + 0.39142I 7.35863 2.13067I
u = 0.827337 0.833435I
a = 0.269864 + 1.251390I
b = 0.725756 + 0.997287I
3.30382 0.39142I 7.35863 + 2.13067I
5
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.649915 + 0.979302I
a = 0.176933 0.959042I
b = 0.517512 + 0.774284I
9.15980 1.98047I 0.08290 + 2.09302I
u = 0.649915 0.979302I
a = 0.176933 + 0.959042I
b = 0.517512 0.774284I
9.15980 + 1.98047I 0.08290 2.09302I
u = 0.780493 + 0.883681I
a = 0.480688 + 0.900878I
b = 0.045523 + 0.725234I
4.69939 + 2.93735I 5.31916 3.32522I
u = 0.780493 0.883681I
a = 0.480688 0.900878I
b = 0.045523 0.725234I
4.69939 2.93735I 5.31916 + 3.32522I
u = 0.899672 + 0.815653I
a = 0.58148 + 3.00390I
b = 1.13268 + 3.45473I
14.5319 + 8.1806I 0.62316 3.31406I
u = 0.899672 0.815653I
a = 0.58148 3.00390I
b = 1.13268 3.45473I
14.5319 8.1806I 0.62316 + 3.31406I
u = 0.794071 + 0.949068I
a = 1.009610 0.549638I
b = 0.536925 1.276200I
2.94749 6.45639I 8.12410 + 6.99903I
u = 0.794071 0.949068I
a = 1.009610 + 0.549638I
b = 0.536925 + 1.276200I
2.94749 + 6.45639I 8.12410 6.99903I
u = 0.724841 + 0.204931I
a = 0.333556 1.065420I
b = 1.20442 1.15144I
8.67788 5.98718I 1.18729 + 3.50832I
u = 0.724841 0.204931I
a = 0.333556 + 1.065420I
b = 1.20442 + 1.15144I
8.67788 + 5.98718I 1.18729 3.50832I
6
Solutions to I
u
1
1(vol +
1CS) Cusp shape
u = 0.884876 + 0.922327I
a = 2.17724 2.75480I
b = 0.33580 4.16119I
19.2754 + 3.2655I 2.41004 2.43597I
u = 0.884876 0.922327I
a = 2.17724 + 2.75480I
b = 0.33580 + 4.16119I
19.2754 3.2655I 2.41004 + 2.43597I
u = 0.823258 + 0.994644I
a = 3.10389 + 1.52970I
b = 0.65697 + 3.62118I
13.9657 14.5534I 0.35354 + 8.08275I
u = 0.823258 0.994644I
a = 3.10389 1.52970I
b = 0.65697 3.62118I
13.9657 + 14.5534I 0.35354 8.08275I
u = 0.168845 + 0.630303I
a = 0.528148 0.293642I
b = 0.263129 0.261083I
0.403036 0.836917I 8.78276 + 7.97359I
u = 0.168845 0.630303I
a = 0.528148 + 0.293642I
b = 0.263129 + 0.261083I
0.403036 + 0.836917I 8.78276 7.97359I
u = 0.465710
a = 0.901293
b = 0.0775306
1.04458 9.39350
7
II. I
u
2
= h21u
19
a + 223u
19
+ · · · 81a 318, 2u
19
a + u
19
+ · · · + a
2
3, u
20
u
19
+ · · · + u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
6
=
a
0.0830040au
19
0.881423u
19
+ ··· + 0.320158a + 1.25692
a
5
=
0.0750988au
19
1.03557u
19
+ ··· + 1.00395a + 0.422925
0.573123au
19
1.67589u
19
+ ··· + 0.0750988a + 2.03557
a
7
=
u
2
+ 1
u
2
a
10
=
u
4
+ u
2
+ 1
u
4
a
4
=
u
11
2u
9
4u
7
4u
5
3u
3
u
11
u
9
2u
7
u
5
+ u
3
+ u
a
12
=
0.320158au
19
+ 1.25692u
19
+ ··· 0.806324a 0.276680
0.422925au
19
0.252964u
19
+ ··· 0.0830040a 0.881423
a
11
=
0.320158au
19
+ 1.25692u
19
+ ··· 0.806324a + 0.723320
0.150198au
19
+ 0.0711462u
19
+ ··· 0.00790514a 0.845850
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
19
8u
17
4u
16
28u
15
8u
14
40u
13
24u
12
64u
11
36u
10
64u
9
44u
8
60u
7
44u
6
36u
5
24u
4
24u
3
8u
2
8u 6
8
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
, c
9
(u
20
+ 5u
19
+ ··· + 2u + 1)
2
c
2
, c
8
(u
20
+ u
19
+ ··· + u
2
+ 1)
2
c
3
(u
20
+ u
19
+ ··· + 4u + 1)
2
c
4
, c
5
, c
6
c
10
, c
11
, c
12
u
40
+ u
39
+ ··· + 6u + 1
9
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
(y
20
+ 21y
19
+ ··· + 10y + 1)
2
c
2
, c
8
(y
20
+ 5y
19
+ ··· + 2y + 1)
2
c
3
(y
20
+ y
19
+ ··· + 18y + 1)
2
c
4
, c
5
, c
6
c
10
, c
11
, c
12
y
40
+ 31y
39
+ ··· + 16y + 1
10
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.362805 + 0.953641I
a = 0.473240 1.154840I
b = 0.17255 + 1.80829I
0.79812 6.06247I 8.39660 + 7.82928I
u = 0.362805 + 0.953641I
a = 0.462437 0.239841I
b = 0.323095 0.392131I
0.79812 6.06247I 8.39660 + 7.82928I
u = 0.362805 0.953641I
a = 0.473240 + 1.154840I
b = 0.17255 1.80829I
0.79812 + 6.06247I 8.39660 7.82928I
u = 0.362805 0.953641I
a = 0.462437 + 0.239841I
b = 0.323095 + 0.392131I
0.79812 + 6.06247I 8.39660 7.82928I
u = 0.161278 + 0.924181I
a = 1.76129 + 0.00175I
b = 0.207836 0.314442I
0.345495 + 0.748059I 11.88926 0.17223I
u = 0.161278 + 0.924181I
a = 0.0174489 + 0.1253060I
b = 0.507066 0.616738I
0.345495 + 0.748059I 11.88926 0.17223I
u = 0.161278 0.924181I
a = 1.76129 0.00175I
b = 0.207836 + 0.314442I
0.345495 0.748059I 11.88926 + 0.17223I
u = 0.161278 0.924181I
a = 0.0174489 0.1253060I
b = 0.507066 + 0.616738I
0.345495 0.748059I 11.88926 + 0.17223I
u = 0.351156 + 0.820236I
a = 0.804851 + 1.144580I
b = 0.34299 1.91217I
2.95992 + 1.83292I 4.44386 4.26331I
u = 0.351156 + 0.820236I
a = 1.80458 0.05939I
b = 0.204203 + 0.494473I
2.95992 + 1.83292I 4.44386 4.26331I
11
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.351156 0.820236I
a = 0.804851 1.144580I
b = 0.34299 + 1.91217I
2.95992 1.83292I 4.44386 + 4.26331I
u = 0.351156 0.820236I
a = 1.80458 + 0.05939I
b = 0.204203 0.494473I
2.95992 1.83292I 4.44386 + 4.26331I
u = 0.765553 + 0.891086I
a = 0.208269 + 0.849702I
b = 0.170011 + 0.227981I
4.71375 + 2.89577I 6.31229 2.74717I
u = 0.765553 + 0.891086I
a = 0.745886 + 1.016220I
b = 0.004581 + 1.103120I
4.71375 + 2.89577I 6.31229 2.74717I
u = 0.765553 0.891086I
a = 0.208269 0.849702I
b = 0.170011 0.227981I
4.71375 2.89577I 6.31229 + 2.74717I
u = 0.765553 0.891086I
a = 0.745886 1.016220I
b = 0.004581 1.103120I
4.71375 2.89577I 6.31229 + 2.74717I
u = 0.872273 + 0.832901I
a = 0.216187 + 1.258090I
b = 0.909321 + 1.037960I
8.70951 3.75485I 2.25682 + 2.44199I
u = 0.872273 + 0.832901I
a = 0.72234 3.52789I
b = 1.39922 3.79149I
8.70951 3.75485I 2.25682 + 2.44199I
u = 0.872273 0.832901I
a = 0.216187 1.258090I
b = 0.909321 1.037960I
8.70951 + 3.75485I 2.25682 2.44199I
u = 0.872273 0.832901I
a = 0.72234 + 3.52789I
b = 1.39922 + 3.79149I
8.70951 + 3.75485I 2.25682 2.44199I
12
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.857922 + 0.867417I
a = 0.583226 0.288576I
b = 0.935046 0.649367I
10.37890 1.55876I 0.11661 + 2.37917I
u = 0.857922 + 0.867417I
a = 1.53336 + 3.87998I
b = 1.18542 + 4.43172I
10.37890 1.55876I 0.11661 + 2.37917I
u = 0.857922 0.867417I
a = 0.583226 + 0.288576I
b = 0.935046 + 0.649367I
10.37890 + 1.55876I 0.11661 2.37917I
u = 0.857922 0.867417I
a = 1.53336 3.87998I
b = 1.18542 4.43172I
10.37890 + 1.55876I 0.11661 2.37917I
u = 0.828456 + 0.942427I
a = 0.115226 1.123400I
b = 0.965278 0.339588I
10.14230 4.70967I 0.36261 + 2.80351I
u = 0.828456 + 0.942427I
a = 3.47576 + 2.62759I
b = 0.50717 + 4.57832I
10.14230 4.70967I 0.36261 + 2.80351I
u = 0.828456 0.942427I
a = 0.115226 + 1.123400I
b = 0.965278 + 0.339588I
10.14230 + 4.70967I 0.36261 2.80351I
u = 0.828456 0.942427I
a = 3.47576 2.62759I
b = 0.50717 4.57832I
10.14230 + 4.70967I 0.36261 2.80351I
u = 0.818606 + 0.971044I
a = 1.029030 + 0.400942I
b = 0.70511 + 1.34475I
8.27570 + 10.03250I 3.16919 7.28178I
u = 0.818606 + 0.971044I
a = 3.45786 1.83520I
b = 0.82034 4.00237I
8.27570 + 10.03250I 3.16919 7.28178I
13
Solutions to I
u
2
1(vol +
1CS) Cusp shape
u = 0.818606 0.971044I
a = 1.029030 0.400942I
b = 0.70511 1.34475I
8.27570 10.03250I 3.16919 + 7.28178I
u = 0.818606 0.971044I
a = 3.45786 + 1.83520I
b = 0.82034 + 4.00237I
8.27570 10.03250I 3.16919 + 7.28178I
u = 0.483351 + 0.483677I
a = 1.169990 0.258941I
b = 1.22095 1.10150I
3.96963 + 1.37271I 0.87985 4.43993I
u = 0.483351 + 0.483677I
a = 0.440357 + 1.167290I
b = 0.006838 + 0.783868I
3.96963 + 1.37271I 0.87985 4.43993I
u = 0.483351 0.483677I
a = 1.169990 + 0.258941I
b = 1.22095 + 1.10150I
3.96963 1.37271I 0.87985 + 4.43993I
u = 0.483351 0.483677I
a = 0.440357 1.167290I
b = 0.006838 0.783868I
3.96963 1.37271I 0.87985 + 4.43993I
u = 0.580477 + 0.222282I
a = 0.879103 + 0.241455I
b = 0.061684 + 0.219008I
3.03554 + 2.59904I 2.40613 3.16627I
u = 0.580477 + 0.222282I
a = 0.700755 + 1.190060I
b = 1.16284 + 1.01300I
3.03554 + 2.59904I 2.40613 3.16627I
u = 0.580477 0.222282I
a = 0.879103 0.241455I
b = 0.061684 0.219008I
3.03554 2.59904I 2.40613 + 3.16627I
u = 0.580477 0.222282I
a = 0.700755 1.190060I
b = 1.16284 1.01300I
3.03554 2.59904I 2.40613 + 3.16627I
14
III. I
u
3
= h−u
5
+ b u, u
4
u
2
+ a + u 2, u
6
+ u
4
+ 2u
2
+ 1i
(i) Arc colorings
a
2
=
0
u
a
9
=
1
0
a
8
=
1
u
2
a
3
=
u
u
3
+ u
a
1
=
u
3
u
5
+ u
3
+ u
a
6
=
u
4
+ u
2
u + 2
u
5
+ u
a
5
=
u
4
u + 1
u
5
u
2
+ u
a
7
=
u
2
+ 1
u
2
a
10
=
u
4
+ u
2
+ 1
u
4
a
4
=
u
u
3
+ u
a
12
=
u
5
+ u
4
+ u
3
+ u
2
+ 2u + 1
u
5
+ u
3
+ u 1
a
11
=
u
5
+ 2u
4
+ u
3
+ 2u
2
+ 2u + 2
u
5
+ u
4
+ u
3
+ u 1
(ii) Obstruction class = 1
(iii) Cusp Shapes = 4u
4
4u
2
8
15
(iv) u-Polynomials at the component
Crossings u-Polynomials at each crossing
c
1
, c
7
(u
3
u
2
+ 2u 1)
2
c
2
, c
8
u
6
+ u
4
+ 2u
2
+ 1
c
3
u
6
c
4
, c
5
, c
6
c
10
, c
11
, c
12
(u
2
+ 1)
3
c
9
(u
3
+ u
2
+ 2u + 1)
2
16
(v) Riley Polynomials at the component
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
(y
3
+ 3y
2
+ 2y 1)
2
c
2
, c
8
(y
3
+ y
2
+ 2y + 1)
2
c
3
y
6
c
4
, c
5
, c
6
c
10
, c
11
, c
12
(y + 1)
6
17
(vi) Complex Volumes and Cusp Shapes
Solutions to I
u
3
1(vol +
1CS) Cusp shape
u = 0.744862 + 0.877439I
a = 0.622301 0.132577I
b = 1.000000I
6.31400 + 2.82812I 0.49024 2.97945I
u = 0.744862 0.877439I
a = 0.622301 + 0.132577I
b = 1.000000I
6.31400 2.82812I 0.49024 + 2.97945I
u = 0.744862 + 0.877439I
a = 0.86742 1.62230I
b = 1.000000I
6.31400 2.82812I 0.49024 + 2.97945I
u = 0.744862 0.877439I
a = 0.86742 + 1.62230I
b = 1.000000I
6.31400 + 2.82812I 0.49024 2.97945I
u = 0.754878I
a = 1.75488 0.75488I
b = 1.000000I
2.17641 7.01950
u = 0.754878I
a = 1.75488 + 0.75488I
b = 1.000000I
2.17641 7.01950
18
IV. u-Polynomials
Crossings u-Polynomials at each crossing
c
1
, c
7
((u
3
u
2
+ 2u 1)
2
)(u
20
+ 5u
19
+ ··· + 2u + 1)
2
· (u
27
+ 7u
26
+ ··· 7u 4)
c
2
, c
8
(u
6
+ u
4
+ 2u
2
+ 1)(u
20
+ u
19
+ ··· + u
2
+ 1)
2
(u
27
3u
26
+ ··· + u + 2)
c
3
u
6
(u
20
+ u
19
+ ··· + 4u + 1)
2
(u
27
3u
26
+ ··· + 192u + 128)
c
4
, c
5
, c
6
c
10
, c
11
, c
12
((u
2
+ 1)
3
)(u
27
+ 15u
25
+ ··· + 3u + 1)(u
40
+ u
39
+ ··· + 6u + 1)
c
9
((u
3
+ u
2
+ 2u + 1)
2
)(u
20
+ 5u
19
+ ··· + 2u + 1)
2
· (u
27
+ 7u
26
+ ··· 7u 4)
19
V. Riley Polynomials
Crossings Riley Polynomials at each crossing
c
1
, c
7
, c
9
((y
3
+ 3y
2
+ 2y 1)
2
)(y
20
+ 21y
19
+ ··· + 10y + 1)
2
· (y
27
+ 27y
26
+ ··· + 385y 16)
c
2
, c
8
((y
3
+ y
2
+ 2y + 1)
2
)(y
20
+ 5y
19
+ ··· + 2y + 1)
2
· (y
27
+ 7y
26
+ ··· 7y 4)
c
3
y
6
(y
20
+ y
19
+ ··· + 18y + 1)
2
(y
27
+ y
26
+ ··· 323584y 16384)
c
4
, c
5
, c
6
c
10
, c
11
, c
12
((y + 1)
6
)(y
27
+ 30y
26
+ ··· 7y 1)(y
40
+ 31y
39
+ ··· + 16y + 1)
20